# Traffic Optimization for Signalized Corridors (TOSCo) Phase 2

Functional Safety Concept and Hazard Analysis Final Report

www.its.dot.gov/index.htm

Final Report – June 30, 2022 FHWA-JPO-22-961



Produced by Crash Avoidance Metrics Partners LLC in response to Cooperative Agreement Number DTFH6114H00002.

U.S. Department of Transportation Federal Highway Administration

### Notice

This document is disseminated under the sponsorship of the U. S. Department of Transportation in the interest of information exchange. The U. S. Government assumes no liability for the use of the information contained in this document.

The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers' names appear in this only because they are considered essential to the objective of the document.

#### **Technical Report Documentation Page**

| 1. Report No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2. Government Accession No.       3. Recipient's Catalog No.                    |                            |                           |                |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------|---------------------------|----------------|--|
| FHWA-JPO-22-961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                            |                           |                |  |
| 4. Title and Subtitle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |                            | . Report Date             |                |  |
| Traffic Optimization for Signalized                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · ·                                                                           |                            | ne 30, 2022               |                |  |
| Functional Safety Concept and F                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lazard Analysis Final                                                           | Report 6.1                 | Performing Organization C | Code           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                            |                           |                |  |
| 7. Author(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                 | 8. 1                       | Performing Organization F | Report No.     |  |
| N. Das, K. Rosol, K. Madala, K, I<br>N. Probert, D. Tian, T. Yumak, R.                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                 | Hussain, V. Kumar,         |                           |                |  |
| 9. Performing Organization Name And Addre                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ess                                                                             | 10.                        | Work Unit No. (TRAIS)     |                |  |
| Crash Avoidance Metrics Partner                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rs LLC (CAMP) on                                                                |                            |                           |                |  |
| behalf of the Vehicle-to-Infrastruc                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ture (V2I) Consortiun                                                           | ו 11.                      | Contract or Grant No.     |                |  |
| 27220 Haggerty Road, Suite D-1<br>Farmington Hills, MI 48331                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                 | D                          | FH6114H00002              |                |  |
| 12. Sponsoring Agency Name and Addres                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s                                                                               | 13.                        | Type of Report and Perio  | d Covered      |  |
| US Department of Transportation                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n, Federal Highway A                                                            | dministration Fin          | nal Report                |                |  |
| 1200 New Jersey Avenue, SE<br>West Building                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 | 14.                        | Sponsoring Agency Cod     | e              |  |
| Washington, DC 20590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                 |                            |                           |                |  |
| 15. Supplementary Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                 |                            |                           |                |  |
| This work was performed under a Administration. The effort was co                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 |                            |                           |                |  |
| 16. Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                 |                            |                           |                |  |
| This report details a step-by-step framework developed in accordance with the process defined in ISO 26262 and provides a summary and findings of the functional safety analysis. The report begins with a review of the TOSCo system, which includes both vehicle and infrastructure components, followed by an introduction of the ISO 26262 functional safety process. The report then provides details on the work products listed below, focusing on the concept phase for automotive applications. |                                                                                 |                            |                           |                |  |
| - Item definition (identify the TOSCo boundary and its intended features and functions)                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                 |                            |                           |                |  |
| <ul> <li>Hazard Analysis and Risk Assessment (HARA) (determination of safety goals and Automotive Safety Integrity<br/>Levels (ASILs)</li> </ul>                                                                                                                                                                                                                                                                                                                                                         |                                                                                 |                            |                           | fety Integrity |  |
| - Functional safety concept (provide requirements for functional safety management, design and implementation)                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                 |                            |                           | plementation)  |  |
| Analysis did not cover product de<br>specific TOSCo components at a                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                 |                            |                           |                |  |
| 17. Keywords                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                 | 18. Distribution Statement |                           |                |  |
| ISO26262, Functional Safety, Ha<br>Analysis, Connected Automation                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 |                            |                           |                |  |
| 19. Security Classif. (of this report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19. Security Classif. (of this report)     20. Security Classif. (of this page) |                            | 21. No. of Pages          | 22. Price      |  |

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

108

## **Table of Contents**

| 1 | Introduction 1                                                          |    |
|---|-------------------------------------------------------------------------|----|
|   | TOSCo Description                                                       | 1  |
|   | Background                                                              | 1  |
|   | Purpose and Scope                                                       | 1  |
| 2 | TOSCo System Architecture                                               | 3  |
|   | TOSCo System Architecture Overview                                      | 3  |
|   | TOSCo Operating Modes and Boundary Diagram                              | 4  |
|   | TOSCo Transitions                                                       | 5  |
|   | Allowed TOSCo Transitions                                               | 7  |
|   | TOSCo Transitions Not Allowed                                           | 8  |
| 3 | ISO 26262 Process Development                                           | 9  |
|   | Safety Lifecycle Process                                                | 9  |
|   | Safety Processes for TOSCo                                              | 10 |
| 4 | Item Definition Development Process                                     | 11 |
|   | Item Boundary                                                           | 11 |
|   | Functions of the Item                                                   | 12 |
|   | Assumptions of Behavior of the Item                                     | 13 |
| 5 | Hazard Analysis and Risk Assessment Development Process                 | 15 |
|   | Hazard Analysis Operability (HAZOP) Study and Identification of Hazards | 15 |
|   | Risk Assessment of Hazardous Events                                     | 26 |
|   | Safety Goals and Safe States                                            | 32 |
| 6 | Functional Safety Concept                                               | 35 |
|   | Functional Safety Strategy                                              |    |
|   | Functional Safety Requirements                                          |    |
|   | Warning and Degradation Concept                                         | 37 |
|   | Actions of the Driver and Endangered Persons                            | 37 |
|   | Arbitration of Multiple Requestors                                      | 37 |

| 7  | Functional S           | afety Analysis                                         | 65 |
|----|------------------------|--------------------------------------------------------|----|
|    | Scope of Fault         | Tree Analysis for TOSCo                                | 65 |
|    | Development            | of FTA                                                 | 68 |
|    | Findings from          | the FTA                                                | 74 |
| 8  | Conclusions            | and Summary                                            | 76 |
| 9  | Future Actio           | ns                                                     | 78 |
| 10 | References             | and Input Documents                                    | 79 |
| AP | PENDIX A.              | Hazard Classification                                  | 80 |
|    | Exposure               |                                                        | 80 |
|    | Severity               |                                                        | 80 |
|    | Controllability        |                                                        | 81 |
| AP | PENDIX B.              | Risk Mitigation for On-Road Testing                    | 82 |
|    | <b>Risk Mitigation</b> | Approach                                               | 82 |
|    | Impact on Fun          | ctional Safety                                         | 83 |
| AP | PENDIX C.              | Traceability of TOSCo Functions, Hazards and Scenarios | 85 |

## **List of Figures**

| Figure 1. TOSCo System Architecture                                                       |    |
|-------------------------------------------------------------------------------------------|----|
| Figure 2. Preliminary Block Diagram of TOSCo Covered Under Functional Safety              | 4  |
| Figure 3. Allowable TOSCo Transitions                                                     | 6  |
| Figure 4. Overview of ISO 26262                                                           | 9  |
| Figure 5. Overview of ISO 26262                                                           |    |
| Figure 6. Potential Vehicle Operational Situations                                        | 27 |
| Figure 7. ASIL Determination                                                              |    |
| Figure 8. Fault Tolerant Time Interval                                                    | 33 |
| Figure 9. Hierarchy of Safety Goals and Functional Safety Requirements                    |    |
| Figure 10. Top-level FTA Events for the Excessive Acceleration Hazard of the TOSCo System | 68 |
| Figure 11. Input Processing Failures for TOSCo Vehicle                                    | 69 |
| Figure 12. Input Processing Failures for TOSCo Infrastructure                             | 70 |
| Figure 13. Control Strategy Failures in TOSCo Vehicle                                     | 71 |
| Figure 14. Control Strategy Failures in TOSCo Infrastructure                              | 72 |
| Figure 15. Output Strategy Failures in TOSCo Vehicle                                      | 73 |
| Figure 16. Output Strategy Failures in TOSCo Vehicle                                      | 73 |
| Figure 17 – Risk Mitigation Speed Profile Approaching a Red Light                         | 83 |

## **List of Tables**

| Table 1. TOSCo Operating Modes Matrix                                                                         | 5  |
|---------------------------------------------------------------------------------------------------------------|----|
| Table 2. Allowable TOSCo Transitions                                                                          | 7  |
| Table 3. TOSCo Transitions Not Allowed                                                                        | 8  |
| Table 4. Primary Functions of TOSCo                                                                           | 12 |
| Table 5. HAZOP Study for TOSCo Vehicle Functions                                                              | 16 |
| Table 6. HAZOP Study for TOSCo Infrastructure Functions                                                       | 18 |
| Table 7. Identification of Hazards from TOSCo Vehicle Malfunctions                                            | 21 |
| Table 8. Identification of Hazards from TOSCo Infrastructure Malfunctions                                     | 23 |
| Table 9. Example of Driving Situation Catalog for TOSCo                                                       | 28 |
| Table 10. Hazard Event Example for Excessive Acceleration "Scenario Evaluation"                               | 30 |
| Table 11. Hazard Event Example for Excessive Acceleration "ASIL Identification"                               | 30 |
| Table 12. ASIL D Malfunction Scenario A                                                                       | 31 |
| Table 13. ASIL D Malfunction Scenario B                                                                       | 31 |
| Table 14. Safety Goal and ASIL Determination                                                                  | 32 |
| Table 15. Requirements for Driver Confirmation to TOSCo Vehicle                                               | 38 |
| Table 16. Requirements for Communication with External Vehicle Inputs                                         | 40 |
| Table 17. Safety Requirements for Communication with Remote Vehicles                                          | 42 |
| Table 18. Safety Requirements for Receiving Communication from Infrastructure         (Enhanced SPaT and MAP) | 43 |
| Table 19. Safety Requirements for GPS Reception for TOSCo Vehicles                                            | 44 |
| Table 20. Safety Requirements for Driver Take Over from TOSCo                                                 | 45 |
| Table 21. Safety Requirements for Valid Trajectory Calculation for TOSCo Vehicles                             | 46 |
| Table 22. Safety Requirements for Propulsion Commands from TOSCo Vehicle(s)                                   | 50 |
| Table 23. Safety Requirements for Providing Driver Take-over Requests or Warning                              | 51 |
| Table 24. Safety Requirements for GPS Time Synchronization for Infrastructure                                 | 52 |

| Table 25. Safety Requirements for RTCM Data and Security for Infrastructure                                                                                             | 53   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Table 26. Safety Requirements for Receiving SPaT Information to Infrastructure                                                                                          | 55   |
| Table 27. Safety Requirements for MAP Configuration for Infrastructure and MAP Messages Sent Between         TOSCo Infrastructure and TOSCo Vehicle(s)                  | . 57 |
| Table 28. Safety Requirements for Enhanced SPaT Message Generation                                                                                                      | 59   |
| Table 29. Safety Requirements for Green Window Determination at TOSCo Infrastructure and SafetyRequirements for Communicating Enhanced SPaT Message to TOSCo Vehicle(s) | . 60 |
| Table 30. Assumptions for External Safety Measures                                                                                                                      | 64   |
| Table 31. Notations Used for Fault Tree Analysis                                                                                                                        | 66   |
| Table 32. Colored Notations used in Fault Trees                                                                                                                         | 67   |
| Table 33. Exposure Classes                                                                                                                                              | 80   |
| Table 34. Severity Classes                                                                                                                                              | 80   |
| Table 35. Controllability Classes                                                                                                                                       | 81   |
| Table 36: Traceability with Item Function, Hazard and ASIL                                                                                                              | . 85 |

## **List of Acronyms and Definitions**

| Acronym       | Meaning                                   |  |
|---------------|-------------------------------------------|--|
| ABS           | Anti-lock Braking System                  |  |
| ACC           | Adaptive Cruise Control                   |  |
| AIS           | Abbreviated Injury Scale                  |  |
| ASIL          | Automotive Safety Integrity Level         |  |
| BSM           | Basic Safety Message                      |  |
| С             | Controllability                           |  |
| CC            | Cruise Control                            |  |
| CACC          | Cooperative Adaptive Cruise Control       |  |
| CAMP          | Crash Avoidance Metrics Partners LLC      |  |
| CSC           | Coordinated Speed Control                 |  |
| E             | Probability of Exposure                   |  |
| E/E           | Electrical and/or electronic              |  |
| Enhanced SPaT | Enhanced Signal Phase and Timing          |  |
| FSC           | Functional Safety Concept                 |  |
| FSR           | Functional Safety Requirement             |  |
| FTA           | Fault Tree Analysis                       |  |
| FTTI          | Fault Tolerant Time Interval              |  |
| GNSS          | Global Navigation Satellite System        |  |
| GPS           | Global Positioning System                 |  |
| GW            | Green Window                              |  |
| HARA          | Hazard Analysis and Risk Assessment       |  |
| HAZOP         | Hazard Analysis Operability               |  |
| HDOP          | Horizontal Dilution of Precision          |  |
| HV            | Host Vehicle                              |  |
| IEC           | International Electrotechnical Commission |  |
| MAP           | Map Data Message                          |  |
| OBE           | On-board Equipment                        |  |

| Acronym | Meaning                                          |  |  |  |
|---------|--------------------------------------------------|--|--|--|
| QM      | Quality Management                               |  |  |  |
| RSU     | Roadside Units                                   |  |  |  |
| RTCM    | Radio Technical Commission for Maritime Services |  |  |  |
| S       | Severity                                         |  |  |  |
| SG      | Safety Goal                                      |  |  |  |
| SOTIF   | Safety of the Intended Functionality             |  |  |  |
| SPaT    | Signal Phase and Timing                          |  |  |  |
| тси     | Traction Control Unit?                           |  |  |  |
| TIP     | Traffic Infrastructure Processor                 |  |  |  |
| TSC     | Traffic Signal Controller                        |  |  |  |
| TOSCo   | Traffic Optimization for Signalized Corridors    |  |  |  |
| USDOT   | United States Department of Transportation       |  |  |  |
| V2I     | Vehicle-to-Infrastructure                        |  |  |  |
| V2V     | Vehicle-to-Vehicle                               |  |  |  |

| Term                    | Definition                                                                                                                             |  |  |  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Item                    | System or combination of systems, to which ISO 26262 is applied, that implements a function or part of a function at the vehicle level |  |  |  |
| Malfunctioning Behavior | Failure or unintended behavior of an item with respect to its design intent                                                            |  |  |  |
| Operational Situation   | Scenario that can occur during a vehicle's life                                                                                        |  |  |  |
| Safe State              | Operating mode, in case of a failure, of an item without an unreasonable level of risk                                                 |  |  |  |
| Safety Critical         | A function, element or component is safety critical if in its absence, has the potential to lead to a hazard                           |  |  |  |
| Safety Goal             | Top-level safety requirement as a result of the Hazard Analysis and Risk<br>Assessment at the vehicle level                            |  |  |  |
| Work Product            | Documentation resulting from one or more associated requirements of ISO 26262                                                          |  |  |  |

## **Chapter 1. Introduction**

## **TOSCo Description**

Traffic Optimization for Signalized Corridors (TOSCo) is a system comprised of both in-vehicle and infrastructure-based equipment. The in-vehicle equipment employs data transmitted via wireless communications from Roadside Units (RSU) to optimize vehicle fuel economy, emissions reduction and traffic mobility along a signalized corridor equipped to provide information required for TOSCo to operate.

The primary function of TOSCo is to generate an optimal speed and acceleration profile to be able to pass through a green light at one or more traffic intersections or to decelerate to a stop and then launch in the most optimized manner per system design. The calculated targets are communicated to an in-vehicle longitudinal control system within the Host Vehicle (HV) to support partial automation. Both passenger cars and trucks are assumed to be able to employ the TOSCo feature. For the purpose of this analysis, the scope of TOSCo application is limited to light duty passenger vehicles.

## Background

ISO 26262 is the *state-of-the-art* standard for functional safety of electrical and/or electronic (E/E) systems that are installed in series production road vehicles, excluding mopeds. It is closely tied to the automotive product development lifecycle and addresses all activities specific to management of functional safety. The ISO 26262 standard was adapted from IEC 61508 (International Electrotechnical Commission) and is tailored to the needs of the road vehicle industry. Product liability requires a burden of proof to be provided for development. The standard provides sufficient requirements and recommendations for the integration of a safe road worthy product throughout the development process, which is also accompanied with the appropriate documentation and work products. This provides sufficient evidence and confidence to use the ISO 26262 standard for initial development and analysis of the TOSCo feature. The latest edition of the standard written in 2018 now provides requirements for trucks, buses, and motorcycles along with typical passenger vehicles of cars, light-duty trucks, and sport utility vehicles which sufficiently covers the intended scope of the TOSCo feature.

### **Purpose and Scope**

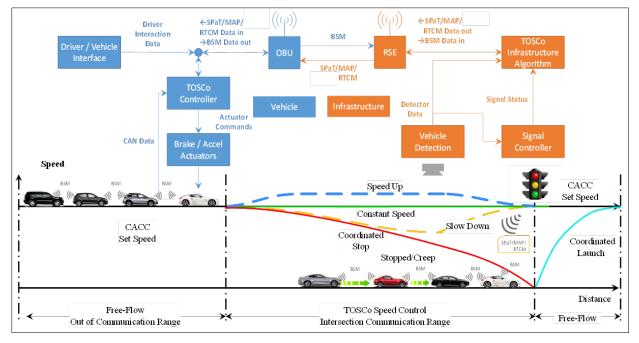
ISO 26262 places significant emphasis towards development of safety in the early product lifecycle and provides comprehensive guidance on development of safety critical products running parallel to the overall development process. ISO 26262 addresses potential vehicle-level hazards and risks due to the failure or malfunction of E/E systems, including interaction of these systems.

For TOSCo, the need for functional safety is strengthened due to multiple E/E features and functions that are planned to support partial automation of the vehicle. Vehicle-to-Vehicle (V2V) communication within the vehicle string and maintaining an optimal speed and acceleration profile throughout the TOSCo range is fully dependent on the proper operation of the TOSCo control system and its interfaces. Communication between the vehicle string and the infrastructure is key to proper operation of the TOSCo feature as well. Functional Safety operation would include maintaining a safe nominal path, monitoring and detection of faults, and mitigating hazards and failures to go to a safe vehicle state.

This requires safety relevant activities to be performed and described to show evidence for the achievement of functional safety. The scope of the document includes a summary of the work products developed for implementation of the concept phase of the product development for automotive applications as per ISO 26262 and include the following:

- Item definition (identify the TOSCo boundary and its intended features and functions)
- Hazard Analysis and Risk Assessment (HARA) (determination of safety goals and Automotive Safety Integrity Levels (ASILs)
- Functional safety concept (provide requirements for functional safety management, design, and implementation)
- Fault Tree Analysis (identification of failure modes and safety mechanisms through a systematic process)

The scope shall now cover Phase 2 of the development of the TOSCo Feature "Build and Test" and shall include the following changes compared to Phase 1 development "Modeling and Analysis:"


- Traffic Infrastructure processing and communication functionality with TOSCo Vehicle are now within TOSCo Item Boundary
- Influence from External functions to the Infrastructure and Vehicle components are considered in the hazard analysis

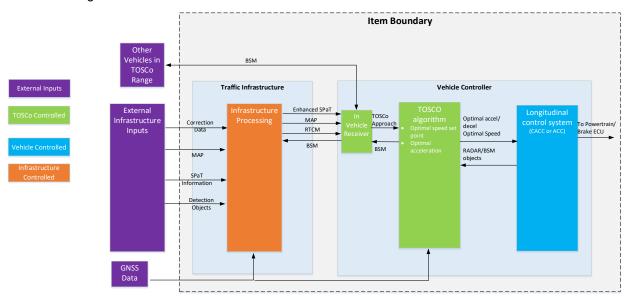
The scope of this analysis will not cover product design and integration. However, the framework shall include recommendations and requirements to integrate functional safety activities into a company-specific development framework. The functional requirements shall focus on technical implementation into specific TOSCo components at a system level which can be utilized for subsequent integration and implementation. This entire development process shall follow the guidelines of ISO 26262 standard.

## Chapter 2. TOSCo System Architecture

## **TOSCo System Architecture Overview**

The Figure 1 below is a high-level illustration of the overall TOSCo system architecture derived from the TOSCo Vehicle System Specification.




Source: Crash Avoidance Metrics Partners LLC (CAMP) Vehicle to Infrastructure (V2I) Consortium, 2022

#### Figure 1. TOSCo System Architecture

The TOSCo feature uses a combination of infrastructure- and vehicle-based components and algorithms along with wireless data communications to position the equipped vehicle to arrive during the "Green Window" at specially designated signalized intersections. The vehicle side of the system (blue boxes) uses applications located in a vehicle to collect Signal Phase and Timing (SPaT) and MAP messages defined in SAE standard J2735 using Vehicle-to-Infrastructure (V2I) communications and data from nearby vehicles using V2V communications. TOSCo also uses information broadcast in the Enhanced SPaT Message, which is computed on the infrastructure side, and is used to convey information about the "Green Window" to individual vehicles. The "Green Window," computed by the infrastructure, is based on the estimated time that a queue will clear the intersection during the green interval. Upon receiving these messages, the individual vehicles signal on a green light or to decelerate to a stop in an eco-friendly manner. This onboard speed trajectory plan is then sent to the onboard longitudinal vehicle control capabilities in the host vehicle to support partial automation. This vehicle control leverages previous work to develop Cooperative Adaptive Cruise Control (CACC) algorithms.

### **TOSCo Operating Modes and Boundary Diagram**

Seven operating modes are defined under TOSCo. TOSCo is dependent upon CACC for vehicle control as shown in the figure below.



Source: Crash Avoidance Metrics Partners LLC (CAMP) Vehicle to Infrastructure (V2I) Consortium, 2022

#### Figure 2. Preliminary Block Diagram of TOSCo Covered Under Functional Safety

The above Figure 2 describes the architecture of the TOSCo Feature that is considered for functional safety requirements. This architecture and its control path, used to determine propulsion commands to the vehicle, are utilized as inputs to both the derivation of the Fault Tree Analysis and the Functional Safety Requirements.

A preliminary architecture allows the identification of the initial functions of the item, their boundaries and interfaces and includes the allocation of safety requirements to the relevant functions and components of the item. In this case, the item or the item boundary includes both the Infrastructure and TOSCo Vehicle Subsystem and considers the safety communication path associated with the Infrastructure and the TOSCo vehicle(s).

A detailed description of the functionality of each of the functions are provided in Section 4.1 of the Item Definition. Explanation of the elements within the architecture are provided in Section 5.1 of the Item Definition.

The operating modes are defined below. Each operating mode is identified to be safety critical, and safety requirements for accurate transition from each mode has been identified in the Functional Safety Concept.

#### **Free Flow**

If a TOSCo-equipped Host Vehicle (HV) is in Free Flow mode while the TOSCo function is active, the equipped vehicles operate in speed/gap control under CACC. HV speed range in Free Flow is from zero to CACC Set Speed.

#### **Coordinated Speed Control**

A TOSCo-equipped HV enters this strategy when TOSCo is active, the HV is receiving SPaT and MAP messages from the next signalized intersection in the HV's path and is matched to one of the intersections ingress lanes. The HV speed range in Coordinated Speed Control mode is from a minimum of  $v_{creep}$  to a maximum of the posted speed limit,  $v_{lim}$ .

- v<sub>lim</sub> is the speed limit of ingress lane, typically 55 mph (88.5 km/h).
- v<sub>creep</sub> is the Creep mode vehicle speed threshold, currently 6.0 m/s.

#### **Coordinated Stop**

A TOSCo-equipped HV enters this strategy when TOSCo is active, HV is cyclically receiving SPaT and MAP messages from the next signalized intersection in the HV's path and is matched to one ingress lane of the intersection. HV speed range in Coordinated Stop mode is from a TOSCo speed range of *v*<sub>lim</sub>, to a final speed of zero and the HV is transmitting a CSTOP flag through its Basic Safety Message (BSM).

#### **Stopped**

A TOSCo-equipped HV enters this strategy when the vehicle is stationary in TOSCo range and matched to an ingress lane either at the stop bar or in a queue. Any movement from this mode requires driver action.

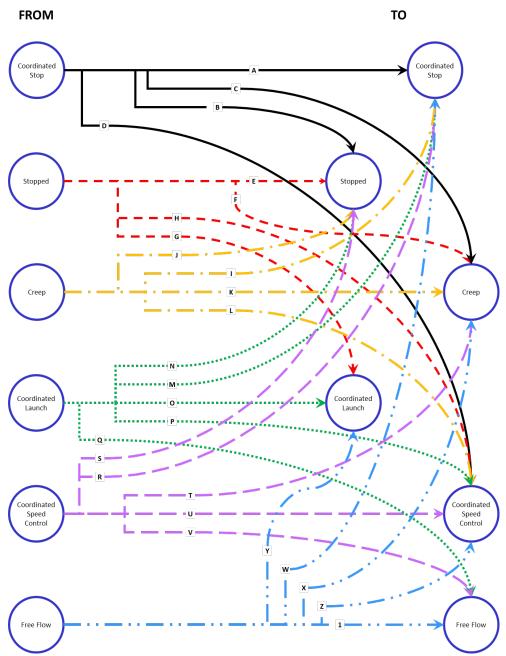
#### Creep

The TOSCo-equipped vehicle is allowed to creep forward in direction towards the stop bar to fill gaps left by preceding vehicles if the gap is more than  $d_{creep}$ .

*d<sub>creep</sub>*: Creep distance threshold (gap between vehicles) that has to be exceeded to allow Creep mode, currently 7.0 m.

#### **Coordinated Launch**

The TOSCo-equipped vehicle inside a TOSCo string broadcasts a Coordinated Launch message after the driver indicated readiness for launch during a STOPPED mode operation.


### **TOSCo Transitions**

The numbers and capital letters in Table 1 below indicate transitions that are allowable while the lower-case Greek letters indicate transitions that are not allowed. Figure 3 below illustrates all allowable TOSCo transitions. This is as per the TOSCo Vehicle System Specification. Each transition from one mode to the other (including not allowed transitions) was analyzed with respect to functional safety. Functional Safety Requirements were developed based on potential safety critical transitions including defining all preconditions and scenarios to achieve a safe transition. Refer to Functional Safety Concept section for a detailed summary.

|                           |                   | То           | То           | То           | То                        | То                      | То           |
|---------------------------|-------------------|--------------|--------------|--------------|---------------------------|-------------------------|--------------|
|                           |                   | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$              | $\downarrow$            | $\downarrow$ |
|                           | Operating<br>Mode | CStop        | Stopped      | Creep        | CLaunch                   | CSC                     | Free Flow    |
| <b>From</b> $\rightarrow$ | CStop             | А            | В            | С            | α                         | D                       | β            |
| From →                    | Stopped           | γ            | E            | F            | G                         | H<br>(1-by-1<br>launch) | δ            |
| <b>From</b> $\rightarrow$ | Creep             | I            | J            | к            | ε                         | L                       | ζ            |
| From $\rightarrow$        | CLaunch           | М            | N            | η            | 0                         | Р                       | Q            |
| From $\rightarrow$        | CSC               | R            | S            | Т            | θ                         | U                       | V            |
| From →                    | Free Flow         | W            | l            | Х            | Y<br>(from<br>standstill) | Z                       | 1            |

U.S. Department of Transportation

Intelligent Transportation Systems Joint Program Office



Source: Crash Avoidance Metrics Partners LLC (CAMP) Vehicle to Infrastructure (V2I) Consortium, 2022

#### Figure 3. Allowable TOSCo Transitions

The following paragraphs describe transitions between the TOSCo operating modes that are allowed and the TOSCo operating modes that are not allowed.

### **Allowed TOSCo Transitions**

The following table (Table 2) identifies allowable transitions between TOSCo operating modes.

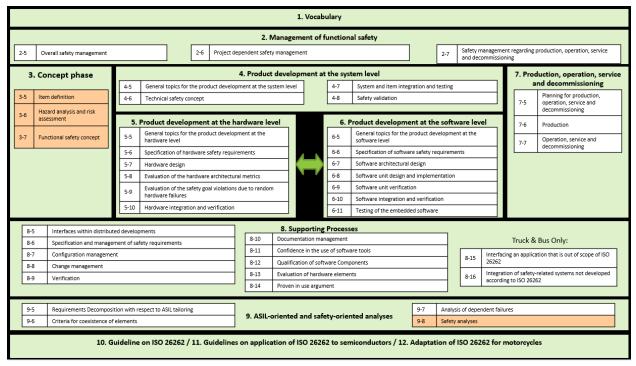
| Transition | Operating Mode Before Transition | Operating Mode After Transition           |
|------------|----------------------------------|-------------------------------------------|
| Α          | Coordinated Stop                 | Coordinated Stop                          |
| В          | Coordinated Stop                 | Stopped                                   |
| С          | Coordinated Stop                 | Сгеер                                     |
| D          | Coordinated Stop                 | Coordinated Speed Control                 |
| E          | Stopped                          | Stopped                                   |
| F          | Stopped                          | Сгеер                                     |
| G          | Stopped                          | Coordinated Launch                        |
| н          | Stopped                          | Coordinated Speed Control (1-by-1 launch) |
| I          | Сгеер                            | Coordinated Stop                          |
| J          | Сгеер                            | Stopped                                   |
| К          | Сгеер                            | Сгеер                                     |
| L          | Сгеер                            | Coordinated Speed Control                 |
| М          | Coordinated Launch               | Coordinated Stop                          |
| Ν          | Coordinated Launch               | Stopped                                   |
| 0          | Coordinated Launch               | Coordinated Launch                        |
| Р          | Coordinated Launch               | Coordinated Speed Control                 |
| Q          | Coordinated Launch               | Free Flow                                 |
| R          | Coordinated Speed Control        | Coordinated Stop                          |
| S          | Coordinated Speed Control        | Stopped                                   |
| т          | Coordinated Speed Control        | Сгеер                                     |
| U          | Coordinated Speed Control        | Coordinated Speed Control                 |
| V          | Coordinated Speed Control        | Free Flow                                 |
| W          | Free Flow                        | Coordinated Stop                          |
| Х          | Free Flow                        | Сгеер                                     |
| Y          | Free Flow                        | Coordinated Launch (from standstill)      |
| Z          | Free Flow                        | Coordinated Speed Control                 |
|            | Free Flow                        | Free Flow                                 |

#### Table 2. Allowable TOSCo Transitions

### **TOSCo Transitions Not Allowed**

Table 3 below lists the transitions that are not allowed.

| Transition | Operating Mode Before Transition | Operating Mode After Transition |
|------------|----------------------------------|---------------------------------|
| α          | Coordinated Stop                 | Coordinated Launch              |
| β          | Coordinated Stop                 | Free Flow                       |
| γ          | Stopped                          | Coordinated Stop                |
| δ          | Stopped                          | Free Flow                       |
| Е          | Сгеер                            | Coordinated Launch              |
| ζ          | Сгеер                            | Free Flow                       |
| η          | Coordinated Launch               | Creep                           |
| θ          | Coordinated Speed Control        | Coordinated Launch              |
| l          | Free Flow                        | Stopped                         |


#### Table 3. TOSCo Transitions Not Allowed

## Chapter 3. ISO 26262 Process Development

This section provides an explanation of the overall structure of the ISO 26262 standard and the portions relevant to the scope of this project.

## Safety Lifecycle Process

Figure 4 below provides the V-model for the different phases of product development and the work products required for implementation of functional safety throughout the development process.



Source: kVA by UL Training Materials, 2022

#### Figure 4. Overview of ISO 26262

The achievement of functional safety is influenced by the development and management process that includes an organization structure for management of functional safety, specification of requirements, design and implementation at various levels of development, integration of all systems and components of the product and finally verification and validation. The V-model is closely linked with the common functional and operational activities for product development. For Phase 1 of the TOSCo Feature development, the focus of safety development was only on the vehicle implementation of TOSCo in the Concept Phase (highlighted in orange). For Phase 2 of the TOSCo Feature development, the focus of safety development was only on the infrastructure and vehicle implementations in the Concept Phase with a Safety Analysis of the entire TOSCo concept. The necessary work products were developed for the sections above highlighted in orange as part of the Phase 2 TOSCo development. These work products were considered and defined as per the requirements and recommendations of the latest ISO 26262 standard released in 2018.

During Phase 2, evaluation of TOSCo Infrastructure was added to the TOSCo Functional Safety Concept. This goes beyond the scope of a typical functional safety analysis to analyze the impacts of TOSCo infrastructure functionality on the vehicle.

## Safety Processes for TOSCo

The following work products were created as required by the ISO 26262 standard to develop a concept phase version of the TOSCo feature that includes all the necessary functional safety attributes:

- Item Definition to define Safety Critical Functions of the TOSCo System
- Hazard Analysis and Risk Assessment (HARA) to identify Vehicle-level Hazardous behavior caused by malfunctions
- Functional Safety Concept to specify safety requirements and achieve fault tolerance or mitigation of relevant faults

As a verification that the three items above were concise, complete, and sufficient, a Safety Analysis of the TOSCo feature was conducted. The safety analysis used in the Phase 2 TOSCo development was a qualitative Fault Tree Analysis.

The role and contribution of each of these work products are described in detail in the lower sections of this document. The Concept Phase (Part 3) of the ISO 26262 Standard follows the engineering V-model, hence each work product must be performed in sequential order as the next work product builds off the previous work product.

For the preparation of each work product, safety meetings and workshops were conducted with relevant TOSCo Project team participants, and all the pertinent information was documented. Multiple drafts of these safety documents were created for iterative reviews and references. Based on feedback and references from the concept versions of the TOSCo System Specification and TOSCo System Architecture, the safety relevant work products were updated, finalized, and subsequently released. As the iterative process continued for each work product, it was sometimes necessary to go back to the preceding work product and make revisions as follow-on work products discovered new findings ensuring the functional safety of the TOSCo feature

## Chapter 4. Item Definition Development Process

The ISO 26262 Standard defines an 'item' as a system or combination of systems that implements a function at a vehicle-level to which functional safety processes of the standard must be applied. A 'vehicle function' is defined as a behavior of the vehicle that is implemented by one or more 'items' and is observable to the user. In this project, the TOSCo Feature is considered as an item that can contribute to the implementation of multiple vehicle functions.

The purpose of the Item Definition is to define and describe the item including its functionality and any dependencies on or interactions with the driver, environment, and other items at a vehicle-level. Also, the Item Definition is developed to provide an adequate understanding of the item so that the activities in subsequent safety lifecycle phases can be performed.

The Hazard Analysis and Risk Assessment is the follow-on step that utilizes the Item Definition to determine hazards, risks, and necessary Safety Goals prior to kicking off the Functional Safety Concept also derived from the Item Definition.

### **Item Boundary**

Figure 2 in Section 2 of this document specifies the boundary of the TOSCo item and its interaction with other components of the vehicle and infrastructure. The known system or item architecture (preliminary architecture), components, and interactions are shown at a high level. These provide a list of all elements, systems, and interfaces within the boundary of the item. A brief high-level description of the elements and their scope for this item is provided below.

<u>External Infrastructure Inputs</u>: The External Infrastructure Inputs are outside the boundary of the TOSCo Feature and provide critical information to the Traffic Infrastructure system for accurate processing of the messages to the TOSCo vehicle(s). This includes a Detection System to detect and report vehicles at a TOSCo capable intersection, a traffic signal controller that provides SPaT data based on NTCIP protocol, a map that provides the necessary detail of the TOSCo capable intersection, and a correction station that provides Correction Data for Radio Technical Commission for Maritime Services (RTCM) correction information.

<u>Traffic Infrastructure</u>: Infrastructure device that allows the TOSCo Roadside Processor to communicate to TOSCo-enabled vehicles. The infrastructure provides Enhanced SPaT containing TOSCo information elements, intersection geometry (SAE J2735 MAP Data Message, or MAP) and position correction information to equipped vehicles.

<u>In-vehicle</u> Receiver: The On Board Equipment (OBE) of the TOSCo vehicle establishes the operating environment ahead of the vehicle by receiving and processing the enhanced SPaT data, MAP data, and RTCM corrections from the infrastructure as well as the BSM data from external sources.

<u>TOSCo Algorithm</u>: The TOSCo algorithm interfaces with the Longitudinal Control System and contains the Operating Mode Selection transition logic. The logic has the strategy to transition between the different TOSCo operating modes and provides acceleration commands based on optimal speed control. The TOSCo algorithm receives multiple inputs from various sources (such as vehicle speed, driver confirmation, enabling/disabling of the CACC and TOSCo feature) to determine the appropriate strategy of operation of the

TOSCo feature. Longitudinal Control System: The Longitudinal Controller uses CACC or Adaptive Cruise Control (ACC) gap control algorithms by utilizing acceleration and deceleration commands based on the distance calculations of an available vehicle string and the optimal vehicle speed for this intersection as determined by the TOSCo Feature.

### Functions of the Item

The TOSCo Feature is comprised of functions from two different perspectives, the infrastructure-side perspective and the vehicle-side perspective. Both are utilized together to implement a safe and controlled driving behavior as part of both individual vehicle and a vehicle string through a connected and TOSCo-equipped signalized corridor.

Below is the list of functions of the TOSCo Feature. These functions were utilized for identifying malfunctions and hazards at a vehicle level.

| Vehicle Functions  | ehicle Functions                                                                                                      |                                                                                                                                       |  |  |  |  |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| ID                 | NAME                                                                                                                  | DESCRIPTION                                                                                                                           |  |  |  |  |  |
| TOSCO_Veh_01       | Acquire target remote vehicle(s)                                                                                      | Acquire a target vehicle to follow                                                                                                    |  |  |  |  |  |
| TOSCO_Veh_02       | Provide vehicle acceleration command                                                                                  | Provide the desired acceleration to the powertrain system                                                                             |  |  |  |  |  |
| TOSCO_Veh_03       | Provide vehicle deceleration command                                                                                  | Provide the desired deceleration to the powertrain and brake systems                                                                  |  |  |  |  |  |
| TOSCO_Veh_04       | Send/Receive communication between vehicle(s)                                                                         | Send and receive BSM messages with CACC extension to/from other equipped veh<br>within the communication range                        |  |  |  |  |  |
|                    |                                                                                                                       | Receive information from roadside equipment with respect to signal phase and timing, including queue and Green Window information     |  |  |  |  |  |
| TOSCO_Veh_05       | Receive communication from                                                                                            | Receive information from roadside equipment with respect to map                                                                       |  |  |  |  |  |
| 103C0_ven_05       | Infrastructure                                                                                                        | Receive information from roadside equipment with respect to position correction data                                                  |  |  |  |  |  |
|                    |                                                                                                                       | Receive information from roadside equipment with respect to data security validation credentials                                      |  |  |  |  |  |
| TOSCO_Veh_06       | Provide driver take-over request/<br>warning                                                                          | Request the driver to takeover longitudinal control                                                                                   |  |  |  |  |  |
| TOSCO_Veh_07       | Allow driver take-over                                                                                                | Allow the driver to take over longitudinal control                                                                                    |  |  |  |  |  |
| TOSCO_Veh_08       | Provide the trajectory based on<br>Queue, Green Window and stop<br>bar                                                | Determine based on Green Window provided by the Infrastructure, vehicle speed, and queue length                                       |  |  |  |  |  |
| TOSCO_Veh_09       | Receive GNSS Data for TOSCo<br>Vehicle (s)                                                                            | Use GNSS Data along with MAP and RTCM to perform map matching and vehicle localization                                                |  |  |  |  |  |
| Infrastructure Fun | ctions                                                                                                                |                                                                                                                                       |  |  |  |  |  |
| ID                 | NAME                                                                                                                  | DESCRIPTION                                                                                                                           |  |  |  |  |  |
| TOSCO_Inf_01       | Collect BSM information from<br>connected vehicles(s) when<br>available<br>NOTE: Not safety critical<br>functionality | Receive BSM messages from TOSCo-equipped vehicles in the vicinity and distribute the information within the infrastructure components |  |  |  |  |  |
| TOSCO_Inf_02       | Provide information to TOSCo<br>vehicle(s) (Enhanced SPaT, MAP,<br>RTCM, Security Credentials)                        | Information from roadside equipment with respect to signal phase and timing, map, and current queue length                            |  |  |  |  |  |
| TOSCO_Inf_03       | Determine queue at the<br>intersection<br>NOTE: Queue detections are not<br>safety critical                           | Determine the presence, length, and activity of the queue at the intersection                                                         |  |  |  |  |  |

#### Table 4. Primary Functions of TOSCo

| Vehicle Functions |                                                                    |                                                                                                                                                                                        |  |  |  |
|-------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| ID                | NAME                                                               | DESCRIPTION                                                                                                                                                                            |  |  |  |
| TOSCO_Inf_04      | Determine Green Window<br>prediction based on queue<br>information | Determine the Green Window based on information from intersection approach, traffic signal system, and queue detection system queue length to predict the duration of the Green Window |  |  |  |
| TOSCO_Inf_05      | Establish communication with external infrastructure elements      | Establish communications with infrastructure objects that provide queue and map information needed for the infrastructure to calculate the Green Window                                |  |  |  |
| TOSCO_Inf_06      | Receive GPS Data for TOSCo<br>infrastructure                       | Receive the GPS clock data needed by the TOSCo infrastructure to perform time synchronization                                                                                          |  |  |  |

## Assumptions of Behavior of the Item

The following assumptions of behavior were generated by considering these conditions:

- TOSCo performance and behavior under different operational modes and operational states
- TOSCo behavior under different vehicle scenarios, environmental and roadway conditions, and external influences
- Expectation of TOSCo's behavior during maintenance, decommissioning, and repair
- TOSCo's behavior while entering or recovering from a safe state
- Interactions of TOSCo with other elements and items on-board the vehicle
- Interactions of other elements and components within the TOSCO item boundary

The assumptions of behavior of the TOSCo Feature under various conditions and situations are detailed below:

- TOSCo works with only a level one longitudinal control system like CACC. It does not work when in ACC mode alone. In other words, the driver is alert and ready to take control. Maintaining enough headway/gap from the lead vehicle is always the responsibility of CACC. Hence, CACC can act as a secondary safety measure to mitigate a failure of speed control commands generated by the TOSCo Feature.
- TOSCo is intended for operation along appropriately equipped signalized arterials with posted speed limits of between 35 mph (56.3 km/h) and 60 mph (96.6 km/h).
- TOSCo equipped intersections are assumed to be intended for longitudinal controlled driving only, and TOSCo driven system is expected to follow the profile of the road curvature. TOSCo is not meant to support lateral control at this point.
- The driver must activate the TOSCo feature to gain TOSCo efficiencies. TOSCo provides feedback to the driver of the current active/inactive state of the TOSCo Feature.
- The Green Window estimation is calculated by the infrastructure using the signal timing and queue information from the intersection and sent to a TOSCo vehicle when within the appropriate range of the intersection to determine the appropriate speed trajectories to improve the efficiency of the vehicles contained within a string.
- The infrastructure utilizes a queue detection system along with SPaT to estimate the Green Window.
- An Enhanced SPaT message from the infrastructure is used by the TOSCo vehicles to improve trajectory estimation.
- GNSS position correction data from the infrastructure is used by the TOSCo vehicles to improve map matching.
- The infrastructure shall stop broadcasting regional extension data (queue length, Green Window) in the Enhanced SPaT message when the TOSCo Feature is not intended to be available at a given intersection or in the event of a failure in the infrastructure equipment.

NOTE: Further assumptions of behavior for the vehicle and infrastructure are covered in the Hazard Analysis Report and the Functional Safety Concept Report.

## Chapter 5. Hazard Analysis and Risk Assessment Development Process

The purpose of the HARA is to identify and to categorize the potential vehicle-level hazards due to a malfunctioning behavior of the item and to formulate the safety goals related to the prevention or mitigation of the hazardous events in order to avoid unreasonable risk.

For this, the item is evaluated with regard to its potential hazardous events. Safety goals and their assigned ASIL are determined by a systematic evaluation of hazardous events. The ASIL is determined by considering the estimate of the impact factors, i.e., severity, probability of exposure and controllability.

The tasks comprising a HARA are:

- a. Situation analysis and hazard identification
- b. Classification of hazardous events (determination of severity, probability of exposure and controllability ratings)
- c. Determination of ASIL and related safety goals

The scope of this HARA is limited to the TOSCo Feature.

NOTE: This HARA (and its results) is only meant for research purposes. It is not intended, as is, to drive development of a TOSCo feature (or similar) in any series production vehicles in the present or in the future.

# Hazard Analysis Operability (HAZOP) Study and Identification of Hazards

The primary functions from the item definition for the TOSCo Feature and the initial estimate of the malfunctions and hazards from item definition are utilized to initiate a Hazard Analysis Operability (HAZOP) Study. The HAZOP is an explorative type of analysis where applicable guidewords are applied to each of the functions of an item to postulate malfunctioning behaviors.

Shown below in Table 5 and Table 6 is the HAZOP Study performed for the TOSCo Feature. Here a matrix is created between the primary functions of the TOSCo Feature (identified from the Item definition) and a probable list of guidewords, which are then utilized to identify potential malfunctions of the system. The malfunctions and failure modes identified from the Item definition could also be used to populate the table.

#### Table 5. HAZOP Study for TOSCo Vehicle Functions

Based on SAE standard J2980 for scenario development to support Hazard Analysis and Risk Assessment

An asterisk '\*' indicates that the hazard is covered elsewhere in the table

A dash '-' indicates that no new hazard is found for the HAZOP-structured malfunction.

An "X" indicates that no malfunctions are applicable for that particular cell in the table

Patterned cells are not malfunctions as they are deemed to be non-safety critical

| Identification of N | alfunctions from Item I                             | Functions                                                        |                                                                    |                                                 |                                                    |                                  |                                 |  |  |
|---------------------|-----------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|----------------------------------|---------------------------------|--|--|
|                     | ITEM FUNCTION                                       |                                                                  | Malfunction                                                        |                                                 |                                                    |                                  |                                 |  |  |
| ITEM                |                                                     |                                                                  | Unintended<br>Activation                                           | More than<br>Intended                           | Less than<br>Intended                              | Incorrect or<br>Wrong<br>(State) | Output Stuck-At<br>Value        |  |  |
| TOSCO_Veh_01        | Acquire target remote vehicle(s)                    | [MF_1] Loss of target acquisition                                | [MF_2] False<br>positive target<br>acquisition                     | -                                               | -                                                  | -                                | [MF_3] Target acquisition stuck |  |  |
| TOSCO_Veh_02        | Provide vehicle<br>acceleration command             | [MF_4] Loss of<br>acceleration<br>command                        | [MF_5]<br>Unintended<br>acceleration<br>command                    | [MF_6]<br>Excessive<br>acceleration<br>command  | [MF_7]<br>Insufficient<br>acceleration<br>command  | *                                | *                               |  |  |
| TOSCO_Veh_03        | Provide vehicle<br>deceleration command             | [MF_8] Loss of<br>deceleration<br>command                        | [MF_9]<br>Unintended<br>deceleration<br>command                    | [MF_10]<br>Excessive<br>deceleration<br>command | [MF_11]<br>Insufficient<br>deceleration<br>command | *                                | *                               |  |  |
| TOSCO_Veh_04        | Send/Receive<br>communication<br>between vehicle(s) | [MF_12] Loss of<br>communication<br>between remote<br>vehicle(s) | [MF_13] Incorrect<br>communication<br>between remote<br>vehicle(s) | *                                               | *                                                  | -                                | *                               |  |  |
| TOSCO_Veh_05        | Receive<br>communication from<br>Infrastructure     | [MF_14] Loss of<br>communication<br>from<br>infrastructure       | [MF_15] Incorrect<br>communication<br>from infrastructure          | *                                               | *                                                  | -                                | *                               |  |  |
| TOSCO_Veh_06        | Provide driver take-<br>over request/ warning       | [MF_16] Loss of<br>driver take-over<br>request/ warning          | [MF_17] False<br>driver take-over<br>request/ warning              | -                                               | -                                                  | -                                | *                               |  |  |
| TOSCO_Veh_07        | Allow driver take-over                              | [MF_18] Loss of driver take-over                                 | [MF_19] False<br>driver take-over                                  | -                                               | [MF_20]<br>Partial drive<br>take-over              | -                                | *                               |  |  |
| TOSCO_Veh_08        | Provide the trajectory                              | [MF_21] Inability to follow                                      | [MF_22]<br>Unintended                                              | *                                               | *                                                  | [MF_23]<br>Wrong                 | *                               |  |  |

| Identification of Malfunctions from Item Functions |                                                 |                                                                                                                                                             |                                                                                            |                                     |                       |                                                                                                                        |                          |  |
|----------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------|--|
|                                                    |                                                 | Malfunction                                                                                                                                                 |                                                                                            |                                     |                       |                                                                                                                        |                          |  |
| ITEM F                                             | ITEM FUNCTION                                   |                                                                                                                                                             | Unintended<br>Activation                                                                   | More than<br>Intended               | Less than<br>Intended | Incorrect or<br>Wrong<br>(State)                                                                                       | Output Stuck-At<br>Value |  |
|                                                    | based on Queue,<br>Green Window and<br>Stop Bar | trajectory leading<br>to loss of<br>determining<br>approach<br>/departure                                                                                   | Activation leading<br>to significant<br>speed differential<br>between vehicles<br>in queue |                                     |                       | approach/<br>departure<br>determination                                                                                |                          |  |
|                                                    |                                                 | Inability to<br>determine queue<br>attributes<br>(length, dispersal<br>etc.) at the<br>intersection.<br>Inability to<br>determine<br>approach<br>/departure | Queue detected when none exists.                                                           | Incorrect<br>queue<br>determination | *                     | Wrong<br>approach/<br>departure<br>determination                                                                       | *                        |  |
| TOSCO_Veh_09                                       | Receive GPS Data for<br>TOSCo Vehicle (s)       | [MF_25] Inability<br>to determine<br>vehicle location<br>and time values                                                                                    | x                                                                                          | x                                   | x                     | [MF_26]<br>Incorrect GPS<br>Data leading<br>to incorrect<br>determination<br>of vehicle<br>location and<br>time values | -                        |  |

|               |                                                                                                      |                                                                                                                                                |                                                                                                                                                        | Malfunction                                                                                                                  |                       |                                                                                                                           |                           |
|---------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------|
| ITEM FUNCTION |                                                                                                      | Loss of Function                                                                                                                               | Unintended<br>Activation                                                                                                                               | More than<br>Intended                                                                                                        | Less than<br>Intended | Incorrect or<br>Wrong (State)                                                                                             | Output Stuck-<br>At Value |
|               | Provide<br>information to<br>TOSCo<br>vehicle(s)<br>(Enhanced<br>SPaT)                               | [MF_28] Inability to perform<br>trajectory planning as the<br>TOSCo Vehicle(s) cannot<br>receive a Green Window                                | [MF_29] Inadvertent<br>activation of the<br>TOSCo during the<br>wrong scenario(s) due<br>to unintended TOSCo<br>information from the<br>infrastructure | [MF_30] Vehicle<br>unable to<br>determine speed<br>trajectory due to<br>excessive SPaT<br>information from<br>Infrastructure | -                     | [MF_31]<br>Incorrect<br>Enhanced SPaT<br>information<br>leading to wrong<br>trajectory<br>planning                        | -                         |
| TOSCO_Inf_02  | Provide<br>information to<br>TOSCo<br>vehicle(s)<br>(MAP)                                            | [MF_33] Inability to provide<br>MAP data to TOSCo<br>Vehicle(s)                                                                                | x                                                                                                                                                      | x                                                                                                                            | x                     | [MF_34]<br>Incorrect MAP<br>data to TOSCo<br>Vehicle(s)<br>leading to<br>inaccurate<br>TOSCo<br>Approach<br>determination | -                         |
|               | Provide<br>information to<br>TOSCo<br>vehicle(s)<br>(RTCM)                                           | Potential dual point failure<br>Loss of correction data to<br>Vehicle (Vehicle needs to<br>utilize internal GPS data to<br>calculate location) | x                                                                                                                                                      | x                                                                                                                            | x                     | [MF_36] Wrong<br>RTCM Message<br>leading to<br>inability to<br>calculate vehicle<br>position                              | -                         |
|               | Provide<br>information to<br>TOSCo<br>vehicle(s)<br>(Security<br>Credentials)                        | Potential dual point failure<br>Loss of security credentials                                                                                   | x                                                                                                                                                      | x                                                                                                                            | x                     | Potential dual<br>point failure<br>Incorrect<br>Security<br>credentials                                                   | x                         |
| TOSCO_Inf_03  | Determine<br>queue at the<br>intersection<br>NOTE: Queue<br>detections are<br>not safety<br>critical | [MF_38] Inability to<br>determine queue attributes<br>(length, dispersal etc.) at<br>the intersection.                                         | [MF_39] false positive.<br>Queue detected when<br>none exists.<br>[MF_40] false negative<br>no queue detected<br>when one exists.                      | -                                                                                                                            | -                     | [MF_41]<br>Incorrect queue<br>determination                                                                               | -                         |

| Identification of                                                                         | f Malfunctions                                                           | from Item Functions                                                                                            |                                                                      |                                                                                                                                    |                                                                                                                                        |                                                                                                                                                                                                    |                           |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|                                                                                           |                                                                          |                                                                                                                |                                                                      | Malfunction                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                    |                           |
| ITEM FUN                                                                                  | ICTION                                                                   | Loss of Function                                                                                               | Unintended<br>Activation                                             | More than<br>Intended                                                                                                              | Less than<br>Intended                                                                                                                  | Incorrect or<br>Wrong (State)                                                                                                                                                                      | Output Stuck-<br>At Value |
| TOSCO_Inf_04                                                                              | Determine<br>Green window<br>prediction<br>based on queue<br>information | [MF_42] Inability to<br>determine Green Window<br>leading to inability to plan<br>vehicle trajectory           | [MF_43] false positive.<br>Provide Green Window<br>when not intended | [MF_44]<br>Determine Green<br>Window more<br>often than<br>necessary,<br>leading to<br>inhibiting<br>Enhanced SPaT<br>transmission | [MF_45]<br>Determine<br>Green Window<br>less frequently,<br>leading to<br>inaccurate<br>determination of<br>the trajectory<br>planning | [MF_46]<br>Incorrect Green<br>Window<br>prediction<br>a) behind the<br>intersection or<br>the opposite<br>direction of the<br>intersection<br>b) Receive<br>Green Window<br>from the wrong<br>lane | -                         |
| TOSCO_Inf_05<br>Establish<br>communication<br>with external<br>infrastructure<br>elements |                                                                          | [MF_50] Loss of Correction<br>Data leading to loss of<br>RTCM at a vehicle level                               | х                                                                    | -                                                                                                                                  | -                                                                                                                                      | [MF_51] Receive<br>corrupted data<br>(or data not<br>updated/updated<br>data not utilized)<br>leading to<br>incorrect<br>determination of<br>vehicle location                                      | -                         |
|                                                                                           | communication<br>with external<br>infrastructure                         | [MF_53] Loss of queue<br>objects leading to inability<br>to predict Green Window                               | X                                                                    | -                                                                                                                                  | -                                                                                                                                      | [MF_54]<br>Incorrect Queue<br>objects received<br>leading to<br>incorrect queue<br>determination<br>(Covered in<br>MF_39)                                                                          | -                         |
|                                                                                           |                                                                          | [MF_56] Loss of MAP Data<br>leading to loss of TOSCo<br>functionality ( <i>Reliability</i><br><i>concern</i> ) | Х                                                                    | x                                                                                                                                  | x                                                                                                                                      | [MF_57]<br>Incorrect MAP<br>Data leading to<br>wrong<br>calculation of<br>TOSCo<br>functionality                                                                                                   | х                         |
| TOSCO_Inf_06                                                                              | Receive GPS<br>Data for TOSCo<br>infrastructure                          | [MF_58] Inability to<br>determine Clock Data<br>leading to inaccurate time<br>values to TOSCo vehicle(s)       | x                                                                    | х                                                                                                                                  | х                                                                                                                                      | [MF_59]<br>Incorrect Clock<br>Data leading to<br>inaccurate time                                                                                                                                   | х                         |

| Identification of Malfunctions from Item Functions |  |                  |                          |                       |                       |                               |                           |
|----------------------------------------------------|--|------------------|--------------------------|-----------------------|-----------------------|-------------------------------|---------------------------|
| ITEM FUNCTION                                      |  |                  |                          | Malfunction           |                       |                               |                           |
|                                                    |  | Loss of Function | Unintended<br>Activation | More than<br>Intended | Less than<br>Intended | Incorrect or<br>Wrong (State) | Output Stuck-<br>At Value |
|                                                    |  |                  |                          |                       |                       | values to TOSCo<br>vehicle(s) |                           |

It is recommended to revisit the HARA process during every phase of TOSCo development. Vehicle operating scenarios and conditions may change, and it is possible that new functions may arise leading to additional potential malfunctions and their associated vehicle hazards.

The malfunctioning behaviors identified above are then mapped to the vehicle functions identified in Table 4. The process below is intended to identify vehicle-level hazards for the TOSCo Feature as shown in Table 7 for vehicle malfunctions and Table 8 for infrastructure malfunctions. The mapping varies with the driving situations considered for the various malfunctioning behaviors.

| ITEM FUNCTION                             | Malfunctions                                                                                                                     | Malfunction Note                                                                                                      | Hazard                                                                |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Acquire Remote Vehicles                   | [MF_1] Loss of target                                                                                                            | Remote vehicle target is lost/missed.                                                                                 | [H_1] Excessive<br>Acceleration<br>[H_2] Insufficient<br>Deceleration |
| Acquire Remote Vehicles                   | quire Remote Vehicles       [MF_2] False positive target acquisition       Remote vehicle target is acquired when there is none. |                                                                                                                       | [H_3] Excessive<br>deceleration<br>[H_4] Insufficient<br>acceleration |
| Acquire Remote Vehicles                   | [MF_3] Target acquisition stuck                                                                                                  | Target acquisition is stuck at 'missing' or 'false positive'.                                                         | All hazards                                                           |
| Provide Acceleration<br>Commands          | [MF_4] Loss of acceleration command                                                                                              | Missing acceleration command, provided target acquisition and communication functions are working correctly.          | [H_4]                                                                 |
| Provide Acceleration<br>Commands          | [MF_5] Unintended acceleration command                                                                                           | Unintended acceleration command, provided target acquisition and communication functions are working correctly.       | [H_1] and [H_4]                                                       |
| Provide Acceleration<br>Commands          | [MF_6] Excessive acceleration command                                                                                            | Excessive acceleration command, provided target acquisition and communication functions are working correctly.        | [H_1]                                                                 |
| Provide Acceleration<br>Commands          | [MF_7] Insufficient acceleration command                                                                                         | Insufficient acceleration command, provided target acquisition and communication functions are working correctly.     | [H_4]                                                                 |
| Provide Deceleration<br>Commands          | [MF_8] Loss of deceleration<br>command                                                                                           | Missing deceleration command, provided target acquisition and communication functions are working correctly.          | [H_2]                                                                 |
| Provide Deceleration<br>Commands          | [MF_9] Unintended deceleration command                                                                                           | Unintended deceleration command, provided target acquisition and communication functions are working correctly.       | [H_2] and [H_3]                                                       |
| Provide Deceleration<br>Commands          | [MF_10] Excessive<br>deceleration command                                                                                        | Excessive deceleration command, provided target acquisition and communication functions are working correctly.        | [H_3]                                                                 |
| Provide Deceleration<br>Commands          | [MF_11] Insufficient deceleration command                                                                                        | Insufficient deceleration command, provided target acquisition and communication functions are working correctly.     | [H_2]                                                                 |
| Communicate with other<br>Remote Vehicles | [MF_12] Loss of<br>Communication with remote<br>vehicle(s)                                                                       | Communication from remote leading vehicle is lost provided other functions are working correctly.                     | [H_1] and [H_2]                                                       |
| Communicate with other<br>Remote Vehicles | [MF_13] Incorrect<br>Communication with remote<br>vehicle(s)                                                                     | Communication from remote leading vehicle is<br>misleading/corrupt provided other functions are<br>working correctly. | All hazards                                                           |
| Communicate with<br>Infrastructure        | [MF_14] Loss of<br>communication with<br>infrastructure                                                                          | Communication from infrastructure is lost provided other functions are working correctly.                             | All hazards                                                           |
| Communicate with<br>Infrastructure        | [MF_15] Incorrect<br>communication with remote<br>vehicle(s)                                                                     | Communication from infrastructure is misleading/<br>corrupt provided other functions are working<br>correctly.        | All hazards                                                           |

Table 7. Identification of Hazards from TOSCo Vehicle Malfunctions

| ITEM FUNCTION                                                          | Malfunctions                                                                                                | Malfunction Note                                                                                                                                                                                                                                                   | Hazard                                                                                                                                         |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Provide Driver Take-over<br>Request/ Warning                           | [MF_16] Loss of driver take-<br>over request/ warning                                                       | System operating in an unsafe state without notifying the driver.                                                                                                                                                                                                  | All hazards                                                                                                                                    |
| Provide Driver Take-over<br>Request/Warning                            | [MF_17] False driver take-over request/ warning                                                             | System requests driver to take-over/ provides warning without an error.                                                                                                                                                                                            | No hazard - Driver is<br>asked to take over<br>manual control when<br>not required. This is<br>inherently safe.                                |
| Allow Driver Take-over                                                 | [MF_18] Loss of driver take-<br>over                                                                        | System is stuck in TOSCo, CACC, ACC or CC operating state without letting driver take-over.                                                                                                                                                                        | All hazards                                                                                                                                    |
| Allow Driver Take-over                                                 | [MF_19] False driver take-over                                                                              | System hands back control to the driver without warning/ driver take-over command.                                                                                                                                                                                 | System falsely provides<br>warning to the driver<br>who then takes over<br>controls - this is a<br>reliability issue and not<br>a safety issue |
| Allow Driver Take-over                                                 | [MF_20] Partial driver take-over                                                                            | System partially hands back control to driver i.e.,<br>acceleration or braking takeover is provided but<br>not both. Partial take-over is considered equally<br>hazardous as loss of take-over.                                                                    | All hazards                                                                                                                                    |
| Provide the Trajectory<br>based on Queue, Green<br>Window and stop bar | [MF_21] Inability to follow<br>trajectory leading to loss of<br>determining approach<br>/departure          | TOSCo cannot determine where it is relative to<br>the geometry or timing of the intersection. This<br>could result in the vehicle wrongly determining<br>that it should cross the intersection when it<br>should come to a stop or vice versa.                     | All hazards                                                                                                                                    |
| Provide the Trajectory<br>based on Queue, Green<br>Window and Stop Bar | [MF_22] Unintended Activation<br>leading to significant speed<br>differential between vehicles in<br>queue  | Inadvertent activation of the TOSCo Feature<br>(within the TOSCo Range) in the vehicle string;<br>leading to a sudden slow down or acceleration of<br>the vehicle.                                                                                                 | [H_1] Excessive vehicle<br>Acceleration<br>[H_3] Excessive vehicle<br>deceleration                                                             |
| Provide the Trajectory<br>based on Queue, Green<br>Window and Stop Bar | [MF_23] Wrong approach<br>/departure determination                                                          | TOSCo cannot determine where it is relative to<br>the geometry or timing of the intersection. This<br>could result in the vehicle wrongly determining<br>that it should cross the intersection or come to a<br>stop (i.e., it can result in incorrect trajectory). | All hazards                                                                                                                                    |
| Provide the Trajectory<br>based on Queue, Green<br>Window and Stop Bar | [MF_24] Intermittent TOSCo<br>Approach based on trajectory<br>calculation                                   | TOSCo cannot determine where it is relative to<br>the geometry or timing of the intersection. This<br>could result in the vehicle wrongly determining<br>that it should cross the intersection when it<br>should come to a stop or vice versa.                     | All hazards                                                                                                                                    |
| Receive GPS Data for<br>TOSCo Vehicle(s)                               | [MF_25] Inability to determine vehicle location and time values                                             | Assumption that TOSCo shuts off (system goes<br>to CACC).<br>NOTE: Functional Safety requirement to warn<br>the driver of GPS loss is required.                                                                                                                    | All hazards                                                                                                                                    |
| Receive GPS Data for<br>TOSCo Vehicle(s)                               | '[MF_26] Incorrect GPS Data<br>leading to incorrect<br>determination of vehicle<br>location and time values | Unable to perform accurate path planning of vehicle due to wrong or sudden change in GPS values.                                                                                                                                                                   | All hazards                                                                                                                                    |
| Receive GPS Data for<br>TOSCo Vehicle(s)                               | [MF_27] Unstable GPS Data<br>leading to incorrect<br>determination of vehicle<br>location and time values   | Receive erratic location data leading to intermittent change in vehicle speed.                                                                                                                                                                                     | All hazards                                                                                                                                    |

| ITEM FUNCTION                                                 | Malfunctions                                                                                                                                     | Malfunction Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hazard                                                                                                                                          |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Provide Information to<br>TOSCo Vehicle(s)<br>(Enhanced SPaT) | [MF_28] Inability to perform<br>trajectory planning as the<br>TOSCo Vehicle(s) cannot<br>receive a Green Window                                  | If vehicle is approaching TOSCo Range or<br>outside TOSCo Range, may not be safety critical<br>as vehicle continues motion in CACC.<br>Already in TOSCo Range - All hazards could<br>occur-TOSCo will be shut off.                                                                                                                                                                                                                                                                                                                                                                                       | All hazards                                                                                                                                     |
| Provide Information to<br>TOSCo Vehicle(s)<br>(Enhanced SPaT) | [MF_29] Inadvertent activation<br>of the TOSCo during the wrong<br>scenario(s) due to unintended<br>TOSCo information from the<br>infrastructure | Provide Enhanced SPaT during a time or<br>situation when not intended or when TOSCo was<br>not supposed to be active.<br>OR<br>Change of intersection status due to external<br>influence (changes the status of the traffic signal<br>controller).<br>- Should not lead to a safety concern.                                                                                                                                                                                                                                                                                                            |                                                                                                                                                 |
| Provide Information to<br>TOSCo Vehicle(s)<br>(Enhanced SPaT) | [MF_30] Vehicle unable to<br>determine speed trajectory due<br>to excessive SPaT information<br>from Infrastructure                              | Update comment: Too many TOSCo messages<br>received affecting TOSCo resources resulting in<br>vehicle unable to determine speed trajectories<br>and leading to TOSCo shutoff.<br>NOTE: CSTOP Scenario (unintended<br>acceleration)                                                                                                                                                                                                                                                                                                                                                                       | All hazards                                                                                                                                     |
| Provide Information to<br>TOSCo Vehicle(s)<br>(Enhanced SPaT) | [MF_31] Incorrect or Stuck-At<br>Enhanced SPaT information<br>leading to wrong trajectory<br>planning                                            | Receive incorrect SPaT messages from the<br>infrastructure leading to wrong trajectory<br>planning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | All propulsion-based<br>hazards                                                                                                                 |
| Provide Information to<br>TOSCo Vehicle(s)<br>(Enhanced SPaT) | [MF_32] Intermittent Enhanced<br>SPaT information                                                                                                | <ul> <li>TOSCo Shut ON and OFF (All propulsion-based hazards based on the vehicle operating mode).</li> <li>NOTE: Intermittent Enhanced SPaT can be classified as:</li> <li>a) Erratic behavior of Green Window inside the SPaT message (while the reception of the SPaT message is still consistent) This leads to "jerky" drive scenarios and simulation studies and filed date have found this to be safety critical.</li> <li>b) Green Window (GW) information is consistent but the reception of the SPaT message itself is intermittent / erratic. This would lead to TOSCo ON and OFF.</li> </ul> | Potentially lead to all<br>hazards if TOSCo OFF<br>close to intersection<br>(mitigated by other<br>collision avoidance<br>systems or by driver) |
| Provide Information to<br>TOSCo Vehicle(s)<br>(MAP)           | [MF_33] Inability to provide<br>MAP data to TOSCo<br>Vehicle(s)                                                                                  | <ul> <li><u>A) Vehicle never received MAP:</u> Assume<br/>TOSCo is not available or TOSCo gets shut<br/>off.</li> <li>B) Vehicle received a MAP and then didn't<br/>receive any other MAP messages as it<br/>traverses through the intersection -&gt; Vehicle<br/>would still use the original MAP message.<br/>Not a safety concern.</li> <li>NOTE: TOSCo should not be active on a<br/>corridor for dynamic changes in the MAP<br/>based on the time of the day (STOP sending<br/>Enhanced SPaT messages before entering<br/>TOSCo Range).</li> </ul>                                                  | Not a safety concern                                                                                                                            |

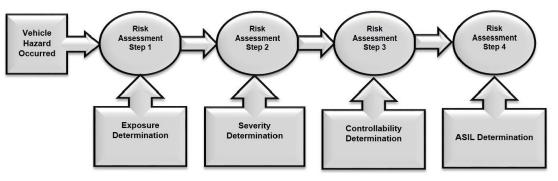
| ITEM FUNCTION                                                         | Malfunctions                                                                                                                           | Malfunction Note                                                                                                                                                               | Hazard                        |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Provide Information to<br>TOSCo vehicle(s)<br>(MAP)                   | [MF_34] Incorrect MAP data<br>to TOSCo Vehicle(s) leading<br>to inaccurate TOSCo<br>Approach determination                             | Wrong vehicle location and data leading to all propulsion-based hazards.                                                                                                       | All hazards                   |
| Provide Information to<br>TOSCo Vehicle(s)<br>(MAP)                   | [MF_35] Delayed MAP Data<br>to TOSCo Vehicle(s) leading<br>to inability to calculate<br>trajectory planning                            | Could get too close to the intersection to<br>calculate trajectory thereby leading to<br>collision with traffic.                                                               | All hazards                   |
| Provide Information to<br>TOSCo Vehicle(s)<br>(RTCM)                  | [MF_36] Wrong RTCM<br>Message leading to inability<br>to calculate vehicle position                                                    | Inaccurate processing of the RTCM message due to old version of correction data on the CORS station.                                                                           | All hazards                   |
| Provide Information to<br>TOSCo Vehicle(s)<br>(RTCM)                  | [MF_37] Delayed or Expired<br>RTCM message leading to<br>inability to determine vehicle<br>position                                    | Inaccurate processing of the RTCM<br>message due to old version of correction<br>data on the CORS station.                                                                     | All hazards                   |
| Determine the Queue at the Intersection                               | This is not a safety concern.                                                                                                          | This is not a safety concern.                                                                                                                                                  | This is not a safety concern. |
| Determine Green<br>Window Prediction<br>based on Queue<br>Information | [MF_42] Inability to<br>determine green window<br>leading to inability to plan<br>vehicle trajectory                                   | Same as MF_28                                                                                                                                                                  | All hazards                   |
| Determine Green<br>Window Prediction<br>based on Queue<br>Information | [MF_43] Provide Green<br>Window when not intended                                                                                      | Unintended green window (but accurate) would not be a vehicle level hazard.                                                                                                    |                               |
| Determine Green<br>Window Prediction<br>based on Queue<br>Information | [MF_44] Determine green<br>window more often than<br>necessary, leading to inhibit<br>Enhanced SPaT<br>transmission                    | Same as [MF_30]                                                                                                                                                                | All hazards                   |
| Determine Green<br>Window Prediction<br>based on Queue<br>Information | [MF_45] Determine green<br>window less frequently,<br>leading to inaccurate<br>determination of the<br>trajectory planning             | Unstable Green Window leading to incorrect trajectory planning                                                                                                                 | All hazards                   |
| Determine Green<br>Window Prediction<br>based on Queue<br>Information | [MF_46] Incorrect or Stuck<br>Green Window prediction<br>(behind the intersection or<br>the opposite direction of the<br>intersection) | Incorrect Green Window prediction leading to incorrect trajectory planning.                                                                                                    | All hazards                   |
|                                                                       |                                                                                                                                        | Determining the start or close of the Green<br>Window earlier in the cycle than where it<br>really exists.                                                                     |                               |
|                                                                       |                                                                                                                                        | Start too early: Vehicle can be targeting to<br>arrive at the stop bar before the queue has<br>cleared. This is not a safety concern based<br>on simulation and field testing. |                               |
|                                                                       |                                                                                                                                        | Close too early: inefficiencies and unnecessary stops (not a safety concern).                                                                                                  |                               |
|                                                                       |                                                                                                                                        | Inability to act on the planned trajectory close to the intersection.                                                                                                          |                               |
|                                                                       |                                                                                                                                        | Start too late: inefficiencies in the signal<br>operations wasted capacity.                                                                                                    |                               |
|                                                                       |                                                                                                                                        | Close too late: Runs a red light.                                                                                                                                              |                               |

| ITEM FUNCTION                                                                                        | Malfunctions                                                                                                                                                                                                                                                                                           | Malfunction Note                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hazard                                                                                                                                             |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Determine Green<br>Window Prediction<br>based on Queue<br>Information                                | [MF_47] Determine Green<br>Window too early, leading to<br>inaccurate determination of<br>the trajectory planning                                                                                                                                                                                      | Too early determination of Green Window does not lead to a safety concern as long as the message is valid.                                                                                                                                                                                                                                                                                                                                            | Not a safety concern                                                                                                                               |
| Determine Green<br>Window Prediction<br>based on Queue<br>Information                                | [MF_48] Determine Green<br>Window too late, leading to<br>inaccurate determination of<br>the trajectory planning                                                                                                                                                                                       | IF Green Window is determined too late, the<br>Enhanced SPaT cannot be broadcasted.<br>TOSCo will STOP functioning. Similar to<br>[MF28].                                                                                                                                                                                                                                                                                                             | All hazards                                                                                                                                        |
| Determine Green<br>Window Prediction<br>based on Queue<br>Information                                | [MF_49.1] Determine Green<br>Window intermittently,<br>leading to inaccurate<br>determination of the<br>trajectory planning<br>[MF_49.2] Sudden change<br>in Green Window prediction<br>leading to a sudden change<br>in TOSCo trajectory causing<br>a vehicle hazard<br>[This is not safety critical] | Need to re-calculate Green Window<br>continuously. Leads to TOSCo switch ON<br>and OFF. Green Window still available for<br>driver to maintain trajectory.<br>Corner Case:<br>Close to the intersection in case of a Green<br>Window "OPEN" when supposed to be<br>"CLOSED," could led to a hazard.<br>Intermittent SPaT information:<br>This could pose as a hazard if SPaT<br>information is processed incorrectly before<br>the next Green Window. | All hazards                                                                                                                                        |
| Establish<br>Communication with<br>External Infrastructure<br>Elements -<br>Receive Queue<br>Objects | [MF_53] Loss of queue<br>objects leading to inability to<br>predict Green Window                                                                                                                                                                                                                       | TOSCo does not activate.                                                                                                                                                                                                                                                                                                                                                                                                                              | All hazards                                                                                                                                        |
| Establish<br>Communication with<br>External Infrastructure<br>Elements -<br>Receive Queue<br>Objects | [MF_54] Incorrect Queue<br>objects received leading to<br>incorrect queue<br>determination                                                                                                                                                                                                             | If queue objects are determined at an incorrect location, potentially vehicle could SPEED_UP to reach to queue quickly.                                                                                                                                                                                                                                                                                                                               | All hazards                                                                                                                                        |
| Establish<br>Communication with<br>External Infrastructure<br>Elements -<br>Receive Queue<br>Objects | [MF_55] Intermittent Queue objects received                                                                                                                                                                                                                                                            | Lead to intermittent SPaT Message<br>transmission. Same as [MF32]                                                                                                                                                                                                                                                                                                                                                                                     | Potentially lead to all<br>hazards if TOSCo<br>OFF close to<br>intersection<br>(mitigated by other<br>collision avoidance<br>systems or by driver) |
| Establish<br>Communication with<br>External Infrastructure<br>Element - Configure<br>MAP Data        | [MF_56] Loss of MAP Data<br>leading to loss of TOSCo<br>functionality                                                                                                                                                                                                                                  | Reliability Concern only                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                    |
| Establish<br>Communication with<br>External Infrastructure<br>Element - Configure<br>MAP Data        | [MF_57] Incorrect MAP Data<br>leading to wrong calculation<br>of TOSCo functionality                                                                                                                                                                                                                   | Wrong vehicle location and data leading to all propulsion-based hazards.                                                                                                                                                                                                                                                                                                                                                                              | All hazards                                                                                                                                        |
| Receive GPS Clock<br>Data for TOSCo<br>Infrastructure                                                | [MF_58] Inability to<br>determine Clock Data<br>leading to inaccurate time<br>values to TOSCo vehicle(s)                                                                                                                                                                                               | Leads to incorrect processing of data leading to incorrect trajectory planning.                                                                                                                                                                                                                                                                                                                                                                       | All hazards                                                                                                                                        |
| Receive GPS Clock<br>Data for TOSCo<br>Infrastructure                                                | [MF_59] Incorrect Clock<br>Data leading to inaccurate<br>time values to TOSCo<br>vehicle(s)                                                                                                                                                                                                            | Leads to incorrect processing of data leading to incorrect trajectory planning.                                                                                                                                                                                                                                                                                                                                                                       | All hazards                                                                                                                                        |

The following hazards were identified from the HAZOP study:

- Excessive Acceleration
- Insufficient Deceleration
- Insufficient Acceleration
- Excessive Deceleration

For Phase 2, Hazardous behavior of Input Processing of Infrastructure, Control Logic and Communication from Infrastructure to TOSCo Vehicle were evaluated. Following observations are recorded from the HAZOP Study.

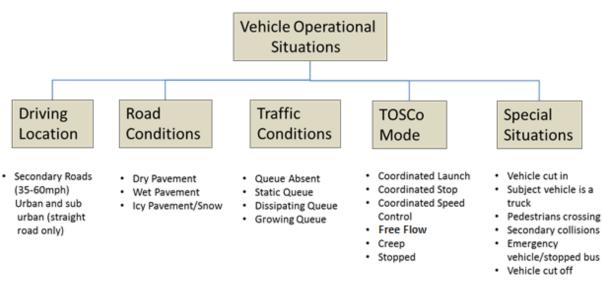

- Infrastructure failure(s) usually lead to all hazards except for certain cases in queue length determination.
- Failure due to Enhanced SPaT (Green Window determination) and MAP have severe safety critical impacts from the infrastructure.

Now a HARA can be performed for each of these four unique hazards. This procedure is explained in the next step.

# **Risk Assessment of Hazardous Events**

The HARA is an analysis procedure that identifies potential hazards, develops a set of specific hazardous events, and assesses the risk of each hazardous event to determine the ASIL and the safety goal. Based on Figure 5, a HARA would be performed for each of the 4 identified hazards.

**Step 1:** As a first step for identification of the list of hazardous events, all the safety critical TOSCo vehicle driving, or operating scenarios, need to be considered. For each such operating scenario, the likelihood of Exposure to that scenario is then determined. The method to determine the "Exposure Rating" and assignment of the Exposure Rating to a vehicle operational situation is explained in APPENDIX A.




Source: kVA by UL Training Materials, 2022

### Figure 5. Overview of ISO 26262

### Vehicle Situation Analysis

Figure 6 below shows a list of all vehicle situations that can be used to identify hazardous events for the TOSCo Feature. These operating situations can be used to populate the HARA worksheet for analysis.



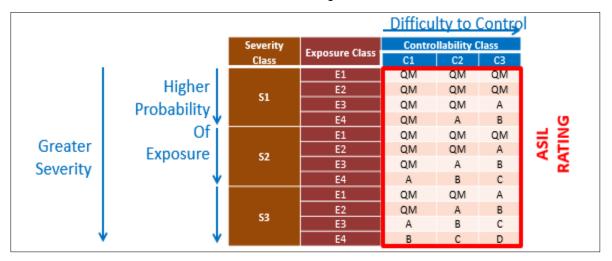
Source: Crash Avoidance Metrics Partners LLC (CAMP) Vehicle to Infrastructure (V2I) Consortium, 2022

#### Figure 6. Potential Vehicle Operational Situations

Free Flow is not considered as a scenario as the vehicle would already be in Safe State or CACC Gap Control. Based on the operational scenarios, a driving situation catalog can be derived which is common to all four different hazards. Table 8 shows a snapshot of the driving situation catalog along with its properties created for the TOSCo Project. An exhaustive list of potential hazardous events has been identified. Hypothetically for the TOSCo Project, a total of 151 situation combinations can be identified. However, for the sake of analysis only certain safety critical scenarios and events were considered.

|                                                                                    | DF                 | <b>RIVING SITUA</b>                                                                           |                              | 3                       |                                                                                                                                                                                               |
|------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------|------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                    | Scenario           |                                                                                               |                              | Expo                    | sure Probability                                                                                                                                                                              |
| Location                                                                           | Road<br>Conditions | Traffic<br>Conditions                                                                         | Vehicle<br>Operation         | Exposure<br>Probability | E – note                                                                                                                                                                                      |
| Secondary Roads (35 mph <<br>posted speed limit < 60 mph –<br>urban and suburban)  | Dry pavement       | Queue absent                                                                                  | Coordinated Stop             | E4                      | Based on a frequency-based<br>approach, it is conservatively<br>assumed that the TOSCo-<br>equipped vehicle will be at a<br>secondary road intersection at<br>least once every driving cycle. |
| Secondary Roads (35 mph <<br>posted speed limit < 60 mph –<br>urban and suburban)  | Dry pavement       | Queue absent                                                                                  | Coordinated<br>Speed Control | E4                      | Based on a frequency-based<br>approach, it is conservatively<br>assumed that the TOSCo-<br>equipped vehicle will be at a<br>secondary road intersection at<br>least once every driving cycle. |
| Secondary Roads (35 mph <<br>posted speed limit < 60 mph –<br>urban and suburban)  | Dry pavement       | Queue absent                                                                                  | Coordinated<br>Launch        | E4                      | Based on a frequency-based<br>approach, it is conservatively<br>assumed that the TOSCo-<br>equipped vehicle will be at a<br>secondary road intersection at<br>least once every driving cycle. |
| Secondary Roads (35 mph <<br>posted speed limit < 60 mph –<br>urban and suburban)  | Dry pavement       | Static queue                                                                                  | Coordinated Stop             | E4                      | Based on a frequency-based<br>approach, it is conservatively<br>assumed that the TOSCo-<br>equipped vehicle will be at a<br>secondary road intersection at<br>least once every driving cycle. |
| Secondary Roads (35 mph <<br>posted speed limit < 60 mph -<br>urban and sub-urban) | Wet pavement       | Queue Absent                                                                                  | Coordinated<br>Speed Control | E2                      | Based on a duration-based<br>approach, immediate vehicle<br>slowing down on a secondary<br>road in wet conditions is <1%<br>operating time.                                                   |
| Secondary Roads (35 mph <<br>posted speed limit < 60 mph –<br>urban and suburban)  | Dry pavement       | Target vehicle<br>left queue OR<br>Dissipating<br>Queue (other<br>vehicles still in<br>front) | Creep                        | E4                      | Highly likely that traffic signal<br>will turn from red to green and<br>vehicles ahead move out of<br>the intersection.                                                                       |

### Table 9. Example of Driving Situation Catalog for TOSCo


### Step 2 and Step 3:

For each hazardous event based on the driving situation catalog, the Severity and the Controllability ratings are each assigned following the guidelines provided in APPENDIX A. For a given hazardous event, this procedure is repeated for reasonable and foreseeable operating scenarios of the vehicle containing the item.

The results of the risk assessment are dependent upon the item, the vehicle, and the availability of data. The item functions, operating environment and vehicle characteristics will affect the specification of the resulting scenarios, as well as the class and rationale for the E, S, and C parameters. The analyst along with expert judgment needs to take these factors into account and create a thorough output with reasonable assumptions relevant to the system scope.

### Step 4:

After all three ratings of "Severity," "Probability of Exposure" and "Controllability" are identified, an ASIL is determined for each hazardous event utilizing these three parameters. The matrix shown in Figure 7 below defines the method to determine ASIL based on the ratings from each line item of the HARA.



Source: kVA by UL Training Materials, 2022

### Figure 7. ASIL Determination

For each of the analyzed hazardous events, the highest ASIL along with the rationale for the assigned Exposure, Severity, and Controllability should be documented in the HARA template.

A Hazard Analysis and Risk Assessment was performed for each hazard in a spreadsheet template for functional safety after identification of the safety relevant scenarios and operational situations. The completed Hazardous event analysis was able to determine the "Severity," "Exposure," "Controllability" and the ASIL classification with appropriate rationale for each hazardous event. The highest ASIL identified from all hazardous events for each vehicle level hazard became the overall ASIL requirement for the hazard. The Safety goals were identified based on the hazard analysis and is covered in Section 5.3.

Each of the safety critical scenarios were evaluated as one-line item for a potential hazardous event and repeated for every other hazard. Here is an example of one hazardous event for Excessive Acceleration. The hazard event is separated into two sections "Scenario Evaluation" and "ASIL Identification."

|                       | Hazard                             | SCENARIO                                                                  |                    |                                             |                      |                        |  |  |  |  |
|-----------------------|------------------------------------|---------------------------------------------------------------------------|--------------------|---------------------------------------------|----------------------|------------------------|--|--|--|--|
| Hazardous<br>Event ID |                                    | Location                                                                  | Road<br>Conditions | Traffic<br>Conditions<br>at<br>Intersection | Vehicle<br>Operation | Scenario<br>Notes      |  |  |  |  |
| HE_1_001              | [H_1]<br>Excessive<br>Acceleration | Secondary Roads<br>(35mph <v<60mph -<br="">urban and sub-urban)</v<60mph> | Dry pavement       | Queue Absent                                | Coordinated<br>Stop  | No vehicle<br>in front |  |  |  |  |

### Table 10. Hazard Event Example for Excessive Acceleration "Scenario Evaluation"

### Table 11. Hazard Event Example for Excessive Acceleration "ASIL Identification"

| Exposu   | ıre Probability                                                                                                                                                                                            |          | Severity                                                                                                                                                                                                                                                                                                                                | Con             | trollability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Exposure | E - note                                                                                                                                                                                                   | Severity | S - note                                                                                                                                                                                                                                                                                                                                | Controllability | C-Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ASIL |
| E4       | Based on a<br>frequency-based<br>approach, it is<br>conservatively<br>assumed that the<br>TOSCo-equipped<br>vehicle will be at a<br>secondary road<br>intersection at least<br>once every driving<br>cycle | S3       | Collision (side<br>impact) is possible<br>with cross traffic as<br>this is a situation<br>where a stop was<br>being attempted. As<br>this happens during<br>a coordinated stop<br>and cross traffic may<br>already be present,<br>the delta V can be ><br>20 mph. Hence<br>severe injuries<br>possible and survival<br>is questionable. | C2              | The driver of the host<br>vehicle potentially has<br>sufficient time to apply<br>brakes and/or steering<br>in the case of<br>unintended<br>acceleration. The driver<br>is approaching an<br>intersection and we are<br>assuming this is the<br>first vehicle at the stop<br>bar as there is no<br>queue. Most drivers<br>should be able to<br>reasonably estimate if<br>the vehicle would be<br>able to come to a stop<br>at the stop bar or not. A<br>controllability of C2 is<br>assigned. | С    |

### Updated HARA Study for Phase 2. Identification of ASIL D Risk

During Phase 1, the above analysis was valid and identifies an ASIL C criterion for the TOSCo feature for excessive acceleration. During Phase 2 analysis, certain corner case scenarios were identified.

**Scenario A:** Vehicle is in TOSCo Mode, queue is absent, and no vehicle is in front. This is a Coordinated Stop. Vehicle Stopping on a RED light and further out of the intersection.

**Analysis:** The driver may not be able to distinguish between an unintended acceleration and intended acceleration as, from the driver's perspective, an unintended acceleration may be identical to the Speed Up case in Coordinated Speed Control (CSC) Mode. It will be too late for the driver to react towards the end of the intersection. General driver expectations of change in acceleration during a RED light including reaction times need to be evaluated.

| Hazard                    | Scenario                                                                                                                | S  | Comment for<br>Severity                                                                   | Е  | Comment for<br>Exposure                                                                                                                                   | С  | Comment for<br>Controllability                                                   | ASIL |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------|------|
| Excessive<br>Acceleration | Coordinated Stop<br>Vehicle Stopping<br>on a RED light<br>and further out of<br>the intersection<br>No vehicle in front | S3 | Collision (side<br>impact) is<br>possible with<br>cross traffic<br>delta V can be<br>> 20 | E4 | Based on a frequency-<br>based approach,<br>TOSCo-equipped<br>vehicle will be at a<br>secondary road<br>intersection at least<br>once every driving cycle | C3 | Too late for the<br>driver to react<br>towards the<br>end of the<br>intersection | D    |

### Table 12. ASIL D Malfunction Scenario A

**Scenario B:** Vehicle is in TOSCo Mode, queue is absent, and no vehicle is in front. This is in a Coordinated Speed Control. Vehicle Slow Down on a RED light.

**Analysis:** If the vehicle is in SLOW DOWN and vehicle accelerates, driver will not be sure if it intended SPEED UP or unintended acceleration until the vehicle is too close to the intersection, which will be difficult to avoid.

| Hazard                    | Scenario                                                                                    | S  | Comment for<br>Severity                                                                   | Е      | Comment for<br>Exposure                                                                                                                                   | с      | Comment for<br>Controllability                                                                                                                              | ASIL |
|---------------------------|---------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Excessive<br>Acceleration | Coordinated<br>Speed Control<br>Vehicle Slowing<br>on a RED light<br>No vehicle in<br>front | S3 | Collision (side<br>impact) is<br>possible with<br>cross traffic<br>delta V can be<br>> 20 | E<br>4 | Based on a frequency-<br>based approach,<br>TOSCo-equipped<br>vehicle will be at a<br>secondary road<br>intersection at least<br>once every driving cycle | C<br>3 | Driver will not<br>be sure if<br>TOSCo<br>intended<br>SPEED UP or<br>unintended<br>acceleration<br>until the vehicle<br>is too close to<br>the intersection | D    |

### Table 13. ASIL D Malfunction Scenario B

Normal operation of TOSCo 'trains' the driver to trust the system that the traffic signal will be green when the vehicle arrives at the intersection regardless of the traffic signal state while approaching the intersection. Requirements specifically assigned as ASIL D are due to a scenario where the applicable failure (such as faulty Enhanced SPaT, MAP, or propulsion command) occurs and the hazardous situation of the vehicle being "too close to the intersection" with no queue present and the traffic signal is red. The hazard is determined at a location that does not allow the driver sufficient time to control the vehicle before running the red traffic signal and hence ASIL D is allocated to such faults and their corresponding safety mechanisms. For Phase 2 of the TOSCo Feature, the TOSCo controller and related safety critical components at the Vehicle and Infrastructure shall be considered at ASIL D integrity.

### **Risk Mitigation Strategy**

To ensure that risk to the driver and the surrounding environment is mitigated for the above circumstances, safety mechanisms must be implemented within the TOSCo Controller, Traffic Infrastructure Controllers and other vehicle controllers that send critical vehicle data to the TOSCo controller. This could utilize a safe state strategy to slow down or stop the vehicle before the vehicle can cross the intersection due to a fault. Other measures could include a combination of some or all of the following methods.

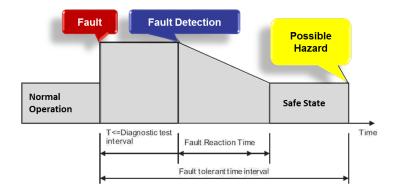
- Continuous warning strategy to the driver to slow or stop the vehicle much ahead of the intersection
- Reduce capability of the operating design domain of the TOSCo Range by slowing down the vehicle while approaching the intersection
- Provide ability to differentiate between a TOSCo controlled safe operation versus a faulty operation to control a hazard by the driver
- Remove driver in loop while implementing safe state due to a TOSCo failure

Section 6 of this document provides safety requirements for TOSCo that need to be implemented to mitigate such a risk. Appendix B describes an interim risk mitigation strategy during the current Build and Test project to protect drivers and the surrounding environment in case of a TOSCo failure. Note that this risk mitigation strategy has been implemented only for test purposes using trained drivers fully aware of the potential hazards.

# Safety Goals and Safe States

After completion of the HARA, the output is a set of safety goals and safe states to ensure safe operation of the item. The highest ASIL identified from the hazardous events for each hazard becomes the ASIL allocated to that hazard. Safe states and related safety measures are specified in the functional safety concept, as appropriate, to achieve the safety goals in case of faults within the item. Each safety goal becomes the top-level safety requirement for all modules of the TOSCo Feature associated with the relevant hazard.

| SAFETY<br>GOAL ID | ASSOCIATED<br>HAZARD      | SAFETY<br>GOAL TITLE                                                       | SAFE STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HIGHEST<br>ASIL | FTTI  | NOTES                                                                                                                      |
|-------------------|---------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|----------------------------------------------------------------------------------------------------------------------------|
| SG01              | Excessive<br>Acceleration | Prevent<br>Excessive<br>Acceleration<br>due to<br>malfunctions in<br>TOSCo | <ul> <li>If the vehicle is in CSC and<br/>the traffic light is green, the<br/>vehicle transitions to ACC<br/>when a lead vehicle is present<br/>or Manual mode is no lead<br/>vehicle is present.</li> <li>If the vehicle is in CSC with<br/>Risk Mitigation Strategy (zero<br/>queue length reported) and the<br/>traffic light is red, the vehicle<br/>will remain in CSC Fallback<br/>and come to a stop at the stop<br/>bar.</li> <li>If the vehicle is in CSTOP<br/>or CREEP, remain in TOSCo</li> </ul> | D               | 400ms | ASIL D: No vehicle<br>in the front (No<br>queue) (Too close to<br>the intersection)<br>ASIL C: For all other<br>situations |


#### Table 14. Safety Goal and ASIL Determination

U.S. Department of Transportation

Intelligent Transportation Systems Joint Program Office

| SAFETY<br>GOAL ID | ASSOCIATED<br>HAZARD         | SAFETY<br>GOAL TITLE                                                          | SAFE STATE                                                                                                              | HIGHEST<br>ASIL | FTTI  | NOTES                                                                                                                      |
|-------------------|------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------|-------|----------------------------------------------------------------------------------------------------------------------------|
|                   |                              |                                                                               | and transition to CSTOP<br>Fallback or CREEP Fallback.                                                                  |                 |       |                                                                                                                            |
| SG02              | Insufficient<br>Deceleration | Prevent<br>Insufficient<br>Deceleration<br>due to<br>malfunctions in<br>TOSCo | Disable TOSCo<br>Transition to ACC when a lead<br>vehicle is present or Manual<br>mode is no lead vehicle is<br>present | D               | 400ms | ASIL D: No vehicle<br>in the front (No<br>queue) (Too close to<br>the intersection)<br>ASIL C: For all other<br>situations |
| SG03              | Excessive<br>Deceleration    | Prevent<br>Excessive<br>Deceleration<br>due to<br>malfunctions in<br>TOSCo    | Disable TOSCo<br>Transition to ACC when a lead<br>vehicle is present or Manual<br>mode is no lead vehicle is<br>present | В               | 200ms |                                                                                                                            |
| SG04              | Insufficient<br>Acceleration | Prevent<br>Insufficient<br>Acceleration<br>due to<br>malfunctions in<br>TOSCo | NA                                                                                                                      | QM              | NA    |                                                                                                                            |

No safety goal is written for Quality Management (QM) rated item-level hazards as these are not considered safety relevant. The ASIL rating for safety goals are assigned based on the maximum ASIL of the relevant item-level hazards. Fault Tolerant Time Interval (FTTI) was defined for each safety goal which is the minimum timespan from the occurrence of a fault in an item to a possible occurrence of a hazardous event, in the absence of a safety mechanism as shown in Figure 8. Based on FTTI, assumed for the CACC Safety Analysis, a slightly relaxed value is considered due to relatively lower vehicle speeds in TOSCo compared to standalone CACC analysis and minimum time gap being only 600ms.

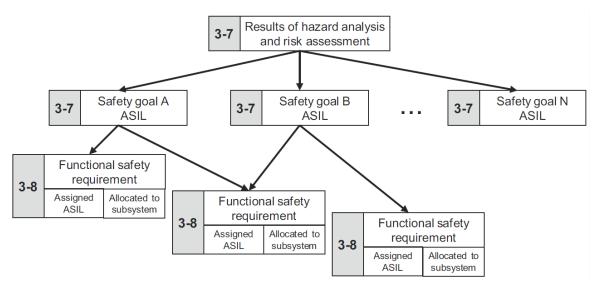


Source: kVA by UL Training Materials, 2022

### Figure 8. Fault Tolerant Time Interval

For SG01, SG02 and SG03, the highest ASIL is associated with the worst-case scenario and the appropriate malfunctions associated to the hazard. It is possible that for a malfunction or failure mode associated to the hazard and for a specific scenario, the ASIL may be different. It is necessary to evaluate each such failure

mode separately and identify the appropriate ASIL from the HAZOP performed in the hazard analysis. The goal is not to over design the system with more complexity by allocating the highest ASIL to a very safety component in the architecture. Like most safety relevant automotive systems in the industry, the TOSCo Feature can be designed with a mix of multiple ASILs allocated to various components and elements. A mapping of each function, driving scenario and hazard to address these above issues is provided in Annex C of this document.


# **Chapter 6. Functional Safety Concept**

The purpose of the Functional Safety Concept (FSC) is to derive the functional safety requirements from the safety goals and allocate them to the preliminary architectural elements of the item, or to external measures. To comply with the safety goals, the FSC contains safety measures, including the safety mechanisms, to be implemented in the item's architectural elements and specified in the functional safety requirements.

The functional safety concept addresses the following:

- Occurrence of fault and degradation of functionality when fault has occurred
- At vehicle level how the timing requirements are met, i.e., how the fault tolerant time interval shall be met by defining a fault handling time interval
- In case of occurrence of fault, the driver warnings needed to increase the controllability by the driver
- In case of occurrence of fault, the warnings that the driver should get for reduction of the risk exposure time to acceptable duration
- Fault detection and failure mitigation
- Transitioning to a safe state, if applicable from a safe state
- Fault avoidance and Fault tolerance mechanisms, where a fault does not lead directly to the violation of the safety goal(s) and which maintains the item in a safe state (with or without degradation)
- Fault detection and driver warning in order to reduce the risk of exposure time to an acceptable interval
- Arbitration logic to select the most appropriate control requires from multiple requests generated simultaneously by different functions

The FSC continues along the hierarchical approach illustrated in Figure 9 by which the safety goals were determined as a result of the hazard analysis and risk assessment. Likewise, in this document, the functional safety requirements are now derived from the safety goals. The Functional Safety Requirements (FSRs) specify the basic safety mechanisms and safety measures which are then allocated to the elements of the preliminary system architecture. Per ISO 26262, the focus of this document is not on the safety of the intended function, but instead is focused on mitigating potential hazards due to malfunctions in the system.



Source: kVA by UL Training Materials, 2022

## Figure 9. Hierarchy of Safety Goals and Functional Safety Requirements (From ISO 26262: 2011- Part 3, Clause 7.2, Figure 2)

# **Functional Safety Strategy**

The TOSCo Feature Functional Safety Strategy shall consider the Traffic Infrastructure portion, the communication path to the TOSCo Vehicle(s) and the TOSCo Algorithm within the TOSCo Vehicle(s). The Safety Strategy shall also include external inputs to the Infrastructure and the TOSCo Vehicle(s) that are responsible to ensure a safe TOSCo trajectory when the TOSCo Vehicle is within range of the TOSCo intersection. Inputs from the Item Definition and the Hazard Analysis are considered to refine the preliminary safety architecture and develop functional safety requirements for both the Infrastructure and the Vehicle portion, including the safety communication path between the two control systems. The Functional Safety Requirements were derived based on a Fault Tree Safety Analysis performed at a feature level for the TOSCo Feature. A traceability structure has been established between the Fault Tree Analysis and the Functional Safety Requirements where the Fault Tree events have been associated to the requirements. This provides the ability to derive safety requirements from the identified malfunctions and failure modes from the Hazard Analysis as well as from the safety measures identified from the Fault Tree Analysis.

# **Functional Safety Requirements**

Based on the above safety strategy and the requirements of the standard, functional safety requirements were derived for each of the safety critical modules of the TOSCo Feature. These safety requirements were allocated to the modules based on a preliminary architectural design. The requirements focus on a more generic approach to the capabilities of the TOSCo feature, such that the interfaces defined can be integrated with any TOSCo-enabled vehicle system. It will be up to the vehicle integrator to interpret the interfaces and utilize the capabilities of the vehicle system, external measures available, and the safety requirements defined for TOSCo for actual implementation.

All safety requirements derived during Phase 1 have been either modified or replaced with new requirements based on verification reviews and updated architecture. Tables are identified below that consist of functional safety requirements for both the TOSCo Vehicle and TOSCo Infrastructure.

Note: Safety Requirements labeled as TOSCO\_Veh\_{ID} are allocated only to the TOSCo vehicle(s) and their relevant components. The diagnostics and the safety measures described within the requirements shall also be mitigated by the software and hardware components within the TOSCo Vehicle.

Note: Safety Requirements labeled as TOSCO\_Inf\_{ID} are allocated only to the TOSCo Infrastructure and their relevant components. Such requirements shall provide the relevant hazardous failure modes of the infrastructure components and the corresponding detection and mitigation strategy within the TOSCo Infrastructure.

Note: Safety Requirements labeled as TOSCO\_Inf\_Veh {ID} are allocated to both the TOSCo vehicle(s) and the Infrastructure. Such requirements are defined for scenarios where a hazardous infrastructure failure needs to be detected and mitigated by the TOSCo Vehicle(s) or safe state needs to be achieved by both Infrastructure and Vehicle components. This is usually for cases where a fault is detected by the Infrastructure, the fault status is communicated to the vehicle, and the vehicle algorithm mitigates or prevents the fault by taking appropriate action.

# Warning and Degradation Concept

Whenever the TOSCo controller detects a fault which does not allow normal TOSCo operation, it will transition to ACC when a lead vehicle is present or Manual mode if no lead vehicle is present. Depending on the failure mode and operating mode, , the system will warn the driver through visual and audio aids. TOSCo operation will be disabled if the fault persists.

# Actions of the Driver and Endangered Persons

The driver would need to be appropriately warned to take over control and maintain appropriate distance gaps with preceding vehicles.

# **Arbitration of Multiple Requestors**

An independent arbitration control mechanism is responsible for arbitrating the correct acceleration / deceleration values from the Intersection longitudinal controller (TOSCo) and the CACC controller.

| Table 15. Requirements for Driver Confirmation to TOSCo Vehicle |
|-----------------------------------------------------------------|
|-----------------------------------------------------------------|

| ID             | Description                                                 | Rationale                                                                                                             | ASIL | Safety<br>Goals | Allocated to       | Safe State | FTA_Event(s)     | Note                                                                                                                                                              |
|----------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------|-----------------|--------------------|------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TOSCO_Veh_01.1 | utilize redundant input processing to identify driver input | Detect unintended<br>transition to TOSCo<br>activation or deactivation<br>due to faulty driver<br>confirmation input. | C    | [SG_001]        | TOSCo<br>Algorithm | NA         | [E351]<br>[E296] | Example relevant<br>operating mode:<br>TOSCo feature<br>shall not activate<br>or deactivate<br>without correct<br>driver confirmation<br>input.                   |
| TOSCO_Veh_01.2 | utilize redundant input                                     | Detect unintended<br>transition to CREEP or<br>CLAUNCH due to faulty<br>driver confirmation.                          | С    | [SG_001]        | TOSCo<br>Algorithm | NA         | [E351]<br>[E296] | Example relevant<br>operating mode:<br>TOSCo feature<br>shall not enter<br>"Coordinated<br>Launch" or<br>"CREEP" without<br>correct Driver<br>confirmation input. |

| ID             | Description                                                                                                                                                                                                                                           | Rationale                                            | ASIL | Safety<br>Goals | Allocated to                                                                     | Safe State                                                          | FTA_Event(s)     | Note |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------|-----------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------|------|
| TOSCO_Veh_01.3 |                                                                                                                                                                                                                                                       | React to Driver takeover<br>input                    | С    | [SG_001]        | Longitudinal<br>Control<br>System<br>(TOSCo and<br>CACC<br>control<br>Algorithm) | Revert to<br>Manual<br>Control                                      | [E296]           |      |
| TOSCO_Veh_01.4 | If the TOSCo algorithm identifies<br>a faulty driver confirmation to<br>activate TOSCo, then TOSCo<br>function shall be disabled.                                                                                                                     | Prevent unintended<br>activation of TOSCo            | С    | [SG_001]        | TOSCo<br>Algorithm                                                               | TOSCo does<br>not activate<br>until valid<br>driver<br>confirmation | [E351]<br>[E296] |      |
| TOSCO_Veh_01.5 | In case the TOSCo feature is<br>unable to transition to Free Flow<br>when a lead vehicle is present<br>and TOSCo disables due to the<br>detection of a Driver<br>Confirmation fault, TOSCo shall<br>still be able to warn the driver to<br>take over. | Emergency operation on<br>inability to disable TOSCo | 1    | [SG_001]        | TOSCo<br>Algorithm                                                               | Provide<br>driver<br>warning                                        | [E351]<br>[E296] |      |

| ID             | Description                                                                                                                                                                                                                                              | Rationale                                            | ASIL | Safety<br>Goals | Allocated to       | Safe State                   | FTA_Event(s)     | Note |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------|-----------------|--------------------|------------------------------|------------------|------|
| TOSCO_Veh_01.6 | In case the TOSCo feature is<br>unable to transition to Manual<br>mode when no lead vehicle is<br>present and TOSCo disables<br>due to the detection of a Driver<br>Confirmation fault, TOSCo shall<br>still be able to warn the driver to<br>take over. | Emergency operation on<br>inability to disable TOSCo |      | [SG_001]        | TOSCo<br>Algorithm | Provide<br>driver<br>warning | [E351]<br>[E296] |      |

### Table 16. Requirements for Communication with External Vehicle Inputs

| ID             | Description                                                                                                                                                                                                                                                                                                                                                                                                                           | Rationale                                                            | ASIL | Safety<br>Goals                        | Allocated<br>To | Safe State | FTA_Event(s)                     | Notes                                                                                                                                                                                                                                                                                           |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------|----------------------------------------|-----------------|------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TOSCO_Veh_02.1 | TOSCo feature shall communicate<br>with the external vehicle controllers<br>(such as ABS, TCU) for safety critical<br>inputs over an end-to-end protected<br>channel.<br>NOTE: Relevant Safety critical inputs<br>from the external vehicle controller(s)<br>to the TOSCo Algorithm include:<br>a) Vehicle Speed<br>b) Vehicle Transmission (PRNDL)<br>State<br>c) Vehicle Gear State<br>d) Accelerator Pedal or Brake Pedal<br>Input | Detect faulty safety<br>critical inputs from<br>external controllers | D    | • [SG_001]<br>• [SG_002]<br>• [SG_003] | Vehicle         | NA         | • [E341]<br>• [E295]<br>• [E292] | ASIL D: Faulty Input<br>too close to the<br>intersection, leading to<br>faulty acceleration<br>command.<br>External vehicle<br>controllers are outside<br>the TOSCo boundary<br>and are responsible to<br>generate and transmit<br>accurate inputs with<br>the appropriate safety<br>integrity. |

| ID            | Description                                                                                                                                                                                                                                                                                                                                                                                                                           | Rationale                                    | ASIL | Safety<br>Goals                        | Allocated<br>To                       | Safe State                                                                                                                                                                            | FTA_Event(s)                     | Notes |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------|----------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------|
| OSCO_Veh_02.2 | If the TOSCo feature determines that<br>an external safety critical vehicle input<br>to TOSCo is invalid due to<br>communication channel errors (data<br>errors, out of order messages, time<br>out, masquerading etc.), then the<br>TOSCo Algorithm shall disable the<br>TOSCo function and transition to ACC<br>when a lead vehicle is present or<br>Manual mode is no lead vehicle is<br>present depending on the failure<br>mode. | External Vehicle<br>Inputs to TOSCo          | D    | • [SG_001]<br>• [SG_002]<br>• [SG_003] | Vehicle<br>System<br>TOSCo<br>Feature | Disable<br>TOSCo<br>Transition to<br>ACC when a<br>lead vehicle is<br>present or<br>Manual mode<br>is no lead<br>vehicle is<br>present.<br>Vehicle<br>System Sets<br>invalidity flag. | • [E295]<br>• [E341]             |       |
| OSCO_Veh_02.3 | TOSCo feature shall disable TOSCo<br>function if it detects a TOSCo<br>activation input that is STUCK ON.                                                                                                                                                                                                                                                                                                                             | React to faulty<br>TOSCo activation<br>input | С    | •[SG_001]                              | Algorithm                             | Disable<br>TOSCo<br>Transition to<br>ACC when a<br>lead vehicle is<br>present or<br>Manual mode<br>if no lead<br>vehicle is<br>present.                                               | • [E287]<br>• [E289]<br>• [E429] |       |

| ID             | Description                                                                                                                                                                                                                                                                | Rationale                                                                                    | ASIL | Safety<br>Goals                        | Allocated<br>To                   | Safe State                   | FTA_Event(s)                                                                     | Notes |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------|----------------------------------------|-----------------------------------|------------------------------|----------------------------------------------------------------------------------|-------|
| TOSCO_Veh_03.1 | The TOSCo Vehicle algorithm shall<br>identify faulty elements in the BSM<br>information corresponding to<br>plausibility issues with remote target<br>vehicles that could compromise<br>string stability by comparing received<br>BSM inputs and Sensor Data.              | Detect invalid BSM<br>information based on<br>plausibility between<br>remote target vehicles | С    | • [SG_001]<br>• [SG_002]<br>• [SG_003] | TOSCo<br>algorithm\c<br>ontroller | NA                           | • [E352]<br>• [E336]<br>• [E337]<br>• [E364]<br>• [E365]<br>• [E366]<br>• [E368] |       |
| TOSCO_Veh_03.2 | The OBE of the TOSCo Vehicle shall<br>incorporate End-to End protection to<br>ensure valid BSM Messages are<br>communicated between remote<br>target vehicle(s).                                                                                                           | · ·                                                                                          | С    | • [SG_001]<br>• [SG_002]<br>• [SG_003] | OBE                               | NA                           | • [E365]                                                                         |       |
| TOSCO_Veh_03.3 | If the TOSCo Algorithm determined<br>invalid BSM information<br>corresponding to remote target<br>vehicles, the TOSCo algorithm shall<br>revert to ACC when a lead vehicle is<br>present or Manual mode if no lead<br>vehicle is present depending on the<br>failure mode. | Mitigate invalid BSM<br>information between<br>remote target vehicles                        | С    | • [SG_001]<br>• [SG_002]<br>• [SG_003] | TOSCo<br>Algorithm                | Revert to<br>ACC /<br>Manual | • [E352]<br>• [E336]<br>• [E337]<br>• [E338]<br>• [E339]<br>• [E368]<br>• [E364] |       |

| ID             | Description                                                                                                                                                                                                                                                       | Rationale                                                            | ASIL | Safety<br>Goals                        | Allocated<br>to | Safe State | FTA_Event(s)                     | Notes |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------|----------------------------------------|-----------------|------------|----------------------------------|-------|
| TOSCO_Veh_04.1 | receive Enhanced SPaT                                                                                                                                                                                                                                             | Detect invalid Enhanced<br>SPaT communication from<br>infrastructure | D    | • [SG_001]<br>• [SG_002]<br>• [SG_003] | OBE             | NA         | • [E354]<br>• [E244]<br>• [E243] |       |
| TOSCO_Veh_04.2 | The OBE on the TOSCo vehicle<br>shall be capable to receive<br>updated MAP data from the<br>Infrastructure over an End-to- End<br>protected channel.<br>NOTE: The end-to-end protected<br>channel shall diagnose data errors,<br>repeated or aged data, time out. | Detect incorrect MAP<br>communication on TOSCo<br>Vehicle            | D    | • [SG_001]<br>• [SG_002]<br>• [SG_003] | OBE             | NA         | • [E354]<br>• [E244]<br>• [E243] |       |

# Table 18. Safety Requirements for Receiving Communication from Infrastructure (Enhanced SPaT and MAP)

| ID             | Description                                                                                                                                                                                                                                                                                                     | Rationale                                                                                              | ASIL | Safety<br>Goals                        | Allocated<br>To    | Safe State                                                    | FTA_Event(s)                     | Notes                                                                                                            |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------|----------------------------------------|--------------------|---------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------|
| TOSCO_Veh_05.1 | If the TOSCo Algorithm determines<br>that the HDOP (Horizontal Dilution<br>of Precision) measurement for GPS<br>position exceeds a specified<br>threshold where vehicle location<br>cannot be determined accurately,<br>the TOSCo feature shall be turned<br>OFF and driver shall be notified.                  | Prevent incorrect<br>localization of the<br>vehicle due to incorrect<br>GPS                            | D    | • [SG_001]<br>• [SG_002]<br>• [SG_003] | TOSCo<br>Algorithm | Disable<br>TOSCo<br>Feature.<br>Provide<br>Driver<br>Warning  | • [E349]<br>• [E269]             | ASIL D: Incorrect<br>GPS received too<br>close to the<br>intersection                                            |
| TOSCO_Veh_05.2 | If the TOSCo vehicle receives<br>unstable GPS or cannot determine<br>vehicle location and time values,<br>then the TOSCo vehicle shall<br>transition to ACC when a lead<br>vehicle is present or Manual mode<br>is no lead vehicle is present<br>depending on the failure mode and<br>provide a driver warning. | Prevent incorrect<br>localization and path<br>planning of vehicle due<br>to unstable or loss of<br>GPS | D    | • [SG_001]<br>• [SG_002]<br>• [SG_003] | TOSCo<br>Algorithm | Disable<br>TOSCo<br>Feature.<br>Provide<br>Driver<br>Warning. | • [E356]<br>• [E268]<br>• [E270] | ASIL D: If vehicle is<br>in CSTOP with no<br>vehicle in front,<br>changing to CACC<br>would run the red<br>light |

| ID             | Description                                                                                                                                                                                                                                                                                                                                                                                                                          | Rationale                                                         | ASIL | Safety<br>Goals                        | Allocated<br>To     | Safe State                                    | FTA_Event(s)                     | Notes |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------|----------------------------------------|---------------------|-----------------------------------------------|----------------------------------|-------|
| TOSCO_Veh_06.1 | If the TOSCo Vehicle is unable to<br>allow driver to take complete<br>control of vehicle from TOSCo<br>mode when needed, the driver<br>shall be provided with an<br>independent means to disable<br>TOSCo function that is outside<br>the primary control path of<br>TOSCo.<br>NOTE: An external independent<br>method (such as brake pedal<br>input or a separate switch) can be<br>used to deactivate TOSCo<br>operation manually. | Allow driver take over<br>from TOSCo through<br>independent means | D    | • [SG_001]<br>• [SG_002]<br>• [SG_003] |                     | External<br>Shutdown of<br>TOSCo by<br>Driver | • [E281]<br>• [E275]<br>• [E273] |       |
| TOSCO_Veh_06.2 | If the vehicle hands over control<br>to the driver without a warning or<br>request from driver, the vehicle<br>shall continue normal operation.<br>NOTE: The driver is assumed to<br>have hands on steering always,<br>and hence can easily continue to<br>take control of vehicle.                                                                                                                                                  | Reaction to false<br>takeover from TOSCo                          | QM   |                                        | TOSCo<br>Controller | NA                                            | • [E274]                         |       |

# Table 20. Safety Requirements for Driver Take Over from TOSCo

| Table 21. Safety Requirements for Valid Trajectory | y Calculation for TOSCo Vehicles |
|----------------------------------------------------|----------------------------------|
|----------------------------------------------------|----------------------------------|

| ID             | Description                                                                                                                                                                                                                                                                | Rationale                                                           | ASIL | Safety<br>Goals | Allocated<br>To     | Safe State | FTA_Event(s)                     | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------|-----------------|---------------------|------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TOSCO_Veh_07.1 | The TOSCo controller shall be<br>incorporated with a Safety<br>Monitor that shall be able to<br>detect all internal single point<br>faults due to random hardware<br>faults or systematic software<br>faults that could lead to invalid<br>vehicle trajectory calculation. | Monitor random hardware<br>faults and systematic<br>software faults |      |                 | TOSCo<br>Controller | NA         | • [E363]<br>• [E320]<br>• [E308] | Systematic<br>Software Faults<br>include<br>a) Failures in<br>Planning of vehicle<br>Trajectory<br>b) Failure in<br>Monitoring vehicle<br>Trajectory<br>c) Failure in<br>Following Vehicle<br>trajectory<br>(Incorrect transition<br>between vehicle<br>modes)<br>(Inability to follow<br>restrictions within<br>particular vehicle<br>modes)<br>(transition to<br>incorrect operating<br>mode without driver<br>confirmation)<br>d) Failure in<br>determining<br>TOSCo Approach<br>based on MAP<br>Matching |

| ID             | Description                                                                                                                                                                                                                                                                                                                                                                                                                  | Rationale                                                | ASIL | Safety<br>Goals | Allocated<br>To     | Safe State                                                                                                                                             | FTA_Event(s) | Notes |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------|-----------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|
| TOSCO_Veh_07.2 | If the Safety Monitor of the<br>TOSCo Feature detects<br>hardware or software faults that<br>could result in an invalid<br>trajectory calculation, then the<br>TOSCo feature shall be<br>deactivated.                                                                                                                                                                                                                        | Mitigate incorrect<br>trajectory planning by<br>vehicle  | D    |                 | TOSCo<br>Controller | Disable<br>TOSCo<br>Feature.<br>Transition<br>to ACC<br>when a<br>lead vehicle<br>is present<br>or Manual<br>mode is no<br>lead vehicle<br>is present. | • [E363]     |       |
| TOSCo_Veh_07.3 | If the TOSCo Vehicle requests<br>the "Creep" function and either<br>of the following occur while in<br>CREEP:<br>A) an acceleration of more than<br>CREEP_MAX_ACC m/s2 is<br>requested or<br>B) a creep speed greater than<br>maximum creep speed<br>(CREEP_MAX_SPD m/s) is<br>requested,<br>then the TOSCo vehicle<br>transition to or remain in<br>STOPPED, until the next valid<br>CREEP function request is<br>received. | Restrictions in TOSCo<br>Trajectory during CREEP<br>Mode | С    | • [SG_001]      | TOSCo<br>Controller | Transition<br>to<br>STOPPED.<br>Remain in<br>STOPPED,<br>if already<br>stopped.                                                                        | • [E362]     |       |

| ID             | Description                                                                                                                                                                                                                                                                 | Rationale                                                                | ASIL | Safety<br>Goals                        | Allocated<br>To     | Safe State                                                                                                                                              | FTA_Event(s) | Notes                                                                              |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------|----------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------|
| TOSCO_Veh_07.4 | TOSCo shall not allow vehicle<br>movement beyond the stop line<br>when in Coordinated Stop or<br>CREEP modes.                                                                                                                                                               | Restrictions in TOSCo<br>Trajectory during<br>STOPPED and CREEP<br>modes | С    | • [SG_001]                             | TOSCo<br>Controller | Maintain<br>current<br>STOPPED<br>state                                                                                                                 | • [E362]     |                                                                                    |
| TOSCO_Veh_07.5 | TOSCo feature shall limit the<br>maximum acceleration and<br>deceleration requests to CACC<br>to TOSCo_MAX_ACCEL or<br>TOSCo_MAX_DECEL (e.g., +/-<br>0.3*g).                                                                                                                | Restrictions in maximum<br>acceleration and<br>deceleration requests     | С    | • [SG_001]<br>• [SG_002]<br>• [SG_003] | TOSCo<br>Controller | NA                                                                                                                                                      | • [E362]     |                                                                                    |
| TOSCO_Veh_07.6 | TOSCo feature shall be disabled<br>in case the vehicle speed goes<br>above TOSCO_SPEED_LIMIT<br>mph (e.g., 55 mph) inside the<br>TOSCo range.                                                                                                                               | Restrictions on maximum speed                                            | С    | • [SG_001]<br>• [SG_002]<br>• [SG_003] | TOSCo<br>Controller | Transition<br>to FREE<br>FLOW                                                                                                                           | • [E362]     | ASIL C: Expect this<br>mechanism to<br>function further out<br>of the intersection |
| TOSCO_Veh_07.7 | If a forbidden state transition is<br>attempted, then TOSCo shall<br>warn the driver and transition to<br>ACC when a lead vehicle is<br>present or Manual mode is no<br>lead vehicle is present mode<br>depending on the current<br>operating mode and driving<br>scenario. | React to incorrect<br>transition between vehicle<br>modes                | D    | • [SG_001]<br>• [SG_002]<br>• [SG_003] | TOSCo<br>Controller | Transition<br>to ACC<br>when a<br>lead vehicle<br>is present<br>or Manual<br>mode is no<br>lead vehicle<br>is present<br>depending<br>on the<br>failure | • [E361]     |                                                                                    |

| ID             | Description                                                                                                                                                                                                                                                                                                                              | Rationale  | ASIL | Safety<br>Goals | Allocated<br>To     | Safe State                      | FTA_Event(s) | Notes |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|-----------------|---------------------|---------------------------------|--------------|-------|
|                |                                                                                                                                                                                                                                                                                                                                          |            |      |                 |                     | mode and<br>warn the<br>driver. |              |       |
| TOSCO_Veh_07.8 | Before entering CLAUNCH on a<br>valid GREEN window, if a driver<br>authorization is not received<br>when in CREEP mode, the<br>TOSCo controller shall transition<br>to STOPPED within:<br>a) Minimum stop distance if a<br>preceding vehicle is present<br>b) Minimum stop distance of<br>stop bar if no preceding vehicle<br>is present | CREEP Mode | С    | • [SG_001]      | TOSCo<br>Controller | Transition<br>to<br>STOPPED     | • [E303]     |       |

| ID             | Description                                                                                                                                                                                                                                                                            | Rationale                                                                                         | ASIL | Safety<br>Goals                        | Allocated<br>To | Safe State                                                  | FTA_Event(s)                                 | Notes |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------|----------------------------------------|-----------------|-------------------------------------------------------------|----------------------------------------------|-------|
| TOSCO_Veh_08.1 | A central arbitration control<br>system shall process valid<br>acceleration or deceleration<br>values to be sent out from both<br>the TOSCo and the CACC<br>Controller by determining the<br>most conservative propulsion<br>command from each of the two<br>longitudinal controllers. | Process valid<br>acceleration/deceleration<br>commands from<br>longitudinal motion<br>controllers | D    | • [SG_001]<br>• [SG_002]<br>• [SG_003] | Controller      | NA                                                          | • [E369]                                     |       |
| TOSCO_Veh_08.2 | controller determines an invalid                                                                                                                                                                                                                                                       | Prevent unintended<br>acceleration or<br>deceleration command to<br>the vehicle system            | D    | • [SG_001]<br>• [SG_002]<br>• [SG_003] | CACC,           | Disable<br>TOSCo<br>and if<br>required<br>CACC<br>operation | • [E369]<br>• [E310]<br>• [E301]<br>• [E300] |       |

| ID             | Description                                                                                                                                                                                                                                                                                                                                                                           | Rationale                                       | ASIL | Safety Goals                           | Allocated to        | Safe State                                                                                                                                                                                                                 | FTA_Event(s)         | Notes                         |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------|----------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------|
| TOSCO_Veh_09.1 | The TOSCo controller shall<br>provide independent means<br>to warn the driver to take<br>over in the event the TOSCo<br>controller is unable to<br>provide driver take over<br>request during safety critical<br>operating scenarios.<br>NOTE: Warning notifications<br>to the driver could include<br>audio, vibrating seat, or<br>vibrating steering wheel (or<br>any other means). | React to loss of take<br>over request to driver | D    | • [SG_001]<br>• [SG_002]<br>• [SG_003] | TOSCo<br>Controller | Provide driver<br>warning                                                                                                                                                                                                  | • [E343]<br>• [E262] |                               |
| TOSCO_Veh_09.2 | TOSCo feature shall ensure<br>the driver is warned<br>whenever there is a<br>transition to Safe State due<br>to a detected fault.                                                                                                                                                                                                                                                     | Provide Driver Warning<br>on fault detection    | В    | • [SG_001]<br>• [SG_002]<br>• [SG_003] | TOSCO<br>Controller | Transition to Safe<br>State (Disable<br>TOSCo, go to<br>ACC when a lead<br>vehicle is present<br>or Manual mode<br>if no lead vehicle<br>is present<br>depending on the<br>failure mode) and<br>Provide Driver<br>Warning. |                      | This is a dual<br>point fault |

Requirements below are dedicated to the TOSCo Infrastructure Portion. A "safety parameter" is considered where applicable to define the criteria for design and specify necessary thresholds and values. Safety Requirements for queue length detection and determination for Infrastructure and Requirements for RTCM data and Security are not considered here as they are not safety related based on Phase 2 study.

Table 24. Safety Requirements for GPS Time Synchronization for Infrastructure

| ID             | Description                                                                                                                                                                  | Safety<br>Parameter             | Rationale                                                                                                                                                    | ASIL | Safety<br>Goals                  | Allocated<br>To | Safe State                                   | Notes                                                                                                                                                                                   |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------|-----------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TOSCo_Inf_10.1 | A common time source shall be<br>utilized for all TOSCo<br>infrastructure components<br>within a safe threshold or<br>margin to ensure time<br>synchronization.              |                                 | Ensure time<br>synchronization<br>between<br>infrastructure<br>components                                                                                    | D    | [SG_001]<br>[SG_002]<br>[SG_003] | TIP<br>RSU      | N/A                                          | NOTE: The<br>infrastructure<br>does not know<br>the vehicle clock.<br>The Global<br>Navigation<br>Satellite System<br>(GNSS)<br>reference time is<br>utilized by the<br>Infrastructure. |
| TOSCo_Inf_10.2 | The TOSCo infrastructure<br>system shall detect when the<br>clock is not synchronized<br>among the infrastructure<br>components which can lead to<br>inaccurate time values. | Specify<br>detection<br>measure | Detect incorrect<br>time values due<br>to Clock Failure<br>to vehicle and<br>incorrect<br>synchronization<br>between vehicle<br>and infrastructure<br>system | D    | [SG_001]<br>[SG_002]<br>[SG_003] | TIP             | N/A                                          |                                                                                                                                                                                         |
| TOSCo_Inf_10.3 | Upon detection of clock<br>synchronization failure, the<br>TOSCo Infrastructure System<br>shall define the TOSCo                                                             | "Undefined"<br>data elements    | Mitigate incorrect<br>trajectory<br>planning by                                                                                                              | D    | [SG_001]<br>[SG_002]             | TIP<br>RSU      | Send an<br>"undefined<br>" value<br>over the |                                                                                                                                                                                         |

| ID | Description                                    | Safety<br>Parameter | Rationale                       | ASIL | Safety<br>Goals | Allocated<br>To | Safe State                                                                                                      | Notes |
|----|------------------------------------------------|---------------------|---------------------------------|------|-----------------|-----------------|-----------------------------------------------------------------------------------------------------------------|-------|
|    | Enhanced SPAT data elements<br>as "undefined." |                     | vehicle due to<br>Clock Failure |      | [SG_003]        |                 | Enhanced<br>SPaT.<br>TOSCo<br>vehicle<br>cannot<br>maintain<br>TOSCo<br>operation<br>and driver<br>is notified. |       |

### Table 25. Safety Requirements for RTCM Data and Security for Infrastructure

| ID             | Description                                                                                                                                                                                                                                                      | Safety<br>Parameter                            | Rationale                                                 | ASIL | Safety<br>Goals | Allocated<br>To          | Safe State | FTA_Event(s)                                                                                 | Notes                                                                                                                                                        |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------|------|-----------------|--------------------------|------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TOSCo_Inf_12.1 | The Infrastructure<br>System shall<br>determine the<br>position correction<br>information (RTCM)<br>transmission validity<br>by applying it to the<br>infrastructure<br>receiver before<br>sending it to the<br>vehicle.<br>NOTE: Invalid<br>Correction Data can | RTCM<br>version<br>Correction<br>Position data | Detect RTCM<br>transmission<br>issues at vehicle<br>level | D    |                 | RTCM<br>generator<br>TIP | NA         | • [E159]<br>• [E160]<br>• [E161]<br>• [E190]<br>• [E191]<br>• [E192]<br>• [E212]<br>• [E213] | Currently<br>the RTCM<br>can only<br>determine if<br>it is<br>receiving<br>the data<br>from the<br>correction<br>station.<br>ASIL D<br>possible<br>only when |

| ID             | Description                                                                                                                                                                                                                 | Safety<br>Parameter | Rationale                                                       | ASIL | Safety<br>Goals | Allocated<br>To            | Safe State                                                                                        | FTA_Event(s)                     | Notes                                                             |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------|------|-----------------|----------------------------|---------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------|
|                | be considered as<br>Loss of Data,<br>Corrupted Data or<br>Intermittent<br>Transmission of<br>data.                                                                                                                          |                     |                                                                 |      |                 |                            |                                                                                                   |                                  | approachin<br>g<br>intersection<br>and no<br>vehicle in<br>front. |
| TOSCo_Inf_12.2 | Upon detection of<br>invalid correction<br>information from the<br>RTCM generator,<br>the Infrastructure<br>System shall not<br>broadcast the<br>correction data to<br>the TOSCo Vehicle.                                   |                     | Prevent vehicle<br>collision due to<br>invalid RTCM             | D    |                 | RTCM<br>generator          | Broadcast<br>correction data<br>as not available                                                  | • [E432]<br>• [E161]<br>• [E160] |                                                                   |
| TOSCo_Veh_12.3 | When the TOSCo<br>vehicle does not<br>receive RTCM data,<br>vehicle positioning<br>system shall revert<br>to WAAS corrections<br>and evaluate<br>positioning quality.<br>Note: Actions to be<br>dependent on drop<br>range. |                     | Prevent vehicle<br>collision due to<br>not broadcast of<br>RTCM | D    |                 | OBE.<br>TOSCo<br>algorithm | TOSCo_Veh_0.<br>51. and<br>TOSCo_Veh_0<br>5.2 specify<br>further safety<br>mechanisms for<br>RTCM | • [E433]<br>• [E212]<br>• [E213] |                                                                   |

| ID             | Description                                                                                                                                                                                                                           | Safety Parameter                                                                                                                                  | Rationale                                                          | ASIL | Safety<br>Goals                     | Allocated<br>to | Safe State | FTA_Event(s)                     | Notes |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------|-------------------------------------|-----------------|------------|----------------------------------|-------|
| TOSCo_Inf_13.1 | The Traffic<br>Infrastructure<br>Processor (TIP) of<br>the Connected<br>Infrastructure shall<br>monitor loss of<br>SPaT information<br>provided by the<br>Traffic Signal<br>Controller (TSC) to<br>detect<br>communication<br>issues. | Periodicity of valid<br>SPaT within logical<br>bounds                                                                                             | Detect loss of<br>SPaT<br>message to<br>Infrastructure<br>System   | D    | •[SG_001]<br>•[SG_002]<br>•[SG_003] | TIP, TSC        | N/A        | • [E217]<br>• [E162]             |       |
| TOSCo_Inf_13.2 | The TIP of the<br>Connected<br>Infrastructure shall<br>verify the content of<br>the SPaT data<br>elements provided<br>by the TSC to<br>ensure the data is<br>within reasonable<br>and safe limits.                                    | Reasonability of<br>the content of the<br>data elements<br>(example, a range<br>check can be<br>performed to verify<br>if data is<br>reasonable). | Detect<br>incorrect SPaT<br>message to<br>Infrastructure<br>System | D    | •[SG_001]<br>•[SG_002]<br>•[SG_003] | TIP, TSC        | N/A        | • [E217]<br>• [E163]<br>• [E164] |       |

## Table 26. Safety Requirements for Receiving SPaT Information to Infrastructure

| ID             | Description                                                                                                                                                                                                                                                                                                     | Safety Parameter | Rationale                                        | ASIL | Safety<br>Goals                     | Allocated<br>to | Safe State                                                                                             | FTA_Event(s)                                             | Notes |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------|------|-------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------|
| TOSCo_Inf_13.3 | If the Spat<br>information is lost<br>or not within<br>reasonable and<br>safe limits from the<br>TSC of the<br>Connected<br>Infrastructure, then<br>the SPaT<br>information shall be<br>sent as not<br>available to the<br>TOSCo vehicles.                                                                      |                  | Report Invalid<br>SPaT into to<br>vehicle        | D    | •[SG_001]<br>•[SG_002]<br>•[SG_003] | TIP, TSC        | Prevent<br>broadcast<br>of further<br>Enhanced<br>SPaT<br>Information<br>to the<br>TOSCO<br>Vehicle(s) | • [E164]<br>• [E162]<br>• [E163]<br>• [E217]<br>• [E331] |       |
| TOSCo_Inf_13.4 | If the TIP from the<br>Infrastructure<br>system detects<br>faults in the queue<br>message data<br>(wrong queue<br>objects), then the<br>Connected<br>Infrastructure shall<br>indicate that the<br>queue and green<br>window portions of<br>the Enhanced<br>SPaT message is<br>invalid to the<br>TOSCo vehicles. |                  | Report Invalid<br>queue and GW<br>to the vehicle | D    | •[SG_001]<br>•[SG_002]<br>•[SG_003] | TIP, TSC        | Prevent<br>broadcast<br>of further<br>Enhanced<br>SPaT<br>Information<br>to the<br>TOSCO<br>Vehicle(s) | • [E164]<br>• [E162]<br>• [E163]<br>• [E217]<br>• [E331] |       |

# Table 27. Safety Requirements for MAP Configuration for Infrastructure and MAP Messages Sent Between TOSCo Infrastructure and TOSCo Vehicle(s)

| ID             | Description                                                                                                                                                             | Safety<br>Parameter                                                        | Rationale                                                                | ASIL | Safety<br>Goals                     | Allocated to                          | Safe State | FTA<br>Event(s)      | Notes                                                                       |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------|------|-------------------------------------|---------------------------------------|------------|----------------------|-----------------------------------------------------------------------------|
| TOSCo_Inf_14.1 | The TSC shall indicate<br>to the RSU which MAP<br>to broadcast to the<br>vehicle for use.                                                                               |                                                                            | Determine correct<br>map to be used                                      | D    | •[SG_001]<br>•[SG_002]<br>•[SG_003] | MAP<br>Configuratio<br>n file<br>TSC  | N/A        | • [E220]<br>• [E156] |                                                                             |
| TOSCo_Inf_14.2 | The infrastructure<br>operator shall verify the<br>proper MAP creation<br>and configuration using<br>systematic processes.                                              | Determine<br>verification<br>of MAP<br>data                                | Systematic<br>process for MAP<br>creation                                | NONE |                                     | MAP<br>Configuratio<br>n file         | N/A        | • [E220]<br>• [E166] | SCMS process<br>to "certify" that<br>the MAP data is<br>accurate            |
| TOSCo_Inf_14.3 | The infrastructure<br>operator shall verify the<br>proper implementation<br>of the created map on<br>infrastructure using<br>systematic processes.                      | Determine<br>proper MAP<br>implementa<br>tion of the<br>infrastructur<br>e | Systematic<br>process for<br>Installation of<br>MAP on<br>Infrastructure | NONE |                                     | MAP<br>Configuratio<br>n installation | N/A        | • [E220]<br>• [E166] | SCMS process<br>to "certify" that<br>the MAP data is<br>installed correctly |
| TOSCo_Inf_14.4 | The infrastructure<br>operator shall routinely<br>verify the Configured<br>MAP data to ensure<br>consistency with<br>desired operation of the<br>traffic signal and the |                                                                            | Systematic<br>Maintenance and<br>Monitoring of MAP                       | NONE |                                     | MAP<br>Configuratio<br>n file         | N/A        | • [E220]<br>• [E166] | SCMS process<br>to "certify" that<br>the MAP data is<br>accurate            |

| ID                     | Description                                                                                                                                                                                                                                                                                                       | Safety<br>Parameter | Rationale                                                             | ASIL | Safety<br>Goals                     | Allocated to                    | Safe State                                                                                                                                                                          | FTA<br>Event(s)                                          | Notes                                                                                                                                     |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------|------|-------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
|                        | traffic signal timing plans.                                                                                                                                                                                                                                                                                      |                     |                                                                       |      |                                     |                                 |                                                                                                                                                                                     |                                                          |                                                                                                                                           |
| TOSCo_Inf_14.5         | If the TSC doesn't<br>indicate to the RSU<br>which map to use at the<br>appropriate periodic<br>rate, then the RSU<br>should not send any<br>MAP data to the<br>vehicle(s).                                                                                                                                       |                     | React and<br>Mitigate incorrect<br>MAP<br>(Infrastructure<br>Portion) | D    | •[SG_001]<br>•[SG_002]<br>•[SG_003] | RSU, MAP<br>configuration       | MAP is no<br>longer sent<br>to the<br>TOSCo<br>vehicle(s).                                                                                                                          | • [E166]<br>• [E220]<br>• [E330]<br>• [E188]<br>• [E189] | The MAP Data<br>does not cover<br>for dynamic<br>changes in the<br>geography and<br>vehicle<br>movement (such<br>as lane change<br>etc.). |
| TOSCo_Inf_Veh_14<br>.6 | If the TOSCo Vehicle<br>OBE stopped receiving<br>MAP message (or<br>never received a MAP<br>message) from RSU<br>when vehicle is in<br>TOSCo Range, then<br>TOSCo feature shall be<br>disabled and vehicle<br>transitions to ACC or<br>Manual mode<br>depending on the<br>failure mode and<br>operating scenario. |                     | React and<br>Mitigate incorrect<br>MAP (Vehicle<br>Portion)           | D    |                                     | OBE, RSU,<br>TOSCo<br>Algorithm | Transition to<br>ACC when<br>a lead<br>vehicle is<br>present or<br>Manual<br>mode if no<br>lead vehicle<br>is present<br>depending<br>on the<br>failure<br>mode and<br>warn driver. | • [E166]<br>• [E220]<br>• [E330]<br>• [E188]<br>• [E189] |                                                                                                                                           |

| ID                     | Description                                                                                                                                                                                                                                | Safety<br>Parameter                                                                    | Rationale                                                                                   | ASIL | Safety<br>Goals                     | Allocated<br>To | Safe<br>State | FTA<br>Event(s)      | Notes |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------|-------------------------------------|-----------------|---------------|----------------------|-------|
| TOSCo_Inf_15.1         | The TIP of the Connected<br>Infrastructure shall verify the<br>data elements in the<br>processing of the Enhanced<br>SPaT generation that could<br>lead to inability to determine<br>Green Window.                                         | Verify if data<br>elements are<br>populated<br>Frequency of<br>GW<br>Accuracy of<br>GW | Detect Failure<br>in population<br>of Enhanced<br>SPaT<br>message<br>from<br>Infrastructure | D    | •[SG_001]<br>•[SG_002]<br>•[SG_003] | TIP             | N/A           | • [E333]<br>• [E222] |       |
| TOSCo_Inf_Veh_15<br>.2 | The OBE of TOSCo<br>vehicle(s) shall verify if<br>Enhanced SPaT message<br>from the infrastructure is<br>updated at defined regular<br>intervals to ensure if the<br>information about queue<br>objects and green window is<br>up to date. | Enhanced<br>SPaT Update<br>Interval (Age of<br>Data)                                   | Detect Failure<br>in population<br>of Enhanced<br>SPaT<br>message to<br>Vehicle             | D    | •[SG_001]<br>•[SG_002]<br>•[SG_003] | OBE             | N/A           | • [E332]<br>• [E222] |       |

## Table 28. Safety Requirements for Enhanced SPaT Message Generation

# Table 29. Safety Requirements for Green Window Determination at TOSCo Infrastructure and Safety Requirements for Communicating Enhanced SPaT Message to TOSCo Vehicle(s)

| ID             | Description                                                                                                                                                                                                                                                                                                                                 | Safety<br>Parameter                                   | Rationale                                                                      | ASIL | Safety<br>Goals                     | Allocated<br>To | Safe State | FTA<br>Event(s)                  | Notes |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------|------|-------------------------------------|-----------------|------------|----------------------------------|-------|
| TOSCo_Inf_16.1 | The TIP of the<br>connected<br>Infrastructure System<br>shall detect incorrect<br>or intermittently<br>generated Green<br>window information by<br>performing periodic<br>post-processing<br>checks of the<br>predicted and actual<br>GW outputs.<br>NOTE: Verification of<br>the GW to satisfy the<br>expected tolerance<br>and threshold. | Periodic Interval<br>for post<br>processing<br>checks | Detect<br>incorrect and<br>intermittent<br>determination<br>of green<br>window | D    | •[SG_001]<br>•[SG_002]<br>•[SG_003] | TIP             | N/A        | • [E204]<br>• [E201]<br>• [E327] |       |

| ID             | Description                                                                                                                                                                                                                                                                      | Safety<br>Parameter                                     | Rationale                                                                      | ASIL | Safety<br>Goals                     | Allocated<br>To | Safe State                                                                                        | FTA<br>Event(s)                  | Notes |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------|------|-------------------------------------|-----------------|---------------------------------------------------------------------------------------------------|----------------------------------|-------|
| TOSCo_Inf_16.2 | If TIP of the<br>Infrastructure system<br>identifies an incorrect<br>or intermittent Green<br>Window value<br>between the actual<br>and predicted outputs<br>for green window<br>calculation, then the<br>resultant Green<br>Window shall be<br>designated as invalid<br>by TIP. |                                                         | Prevent<br>sending invalid<br>Green window<br>to TOSCo<br>vehicles             | D    | [SG_001]<br>•[SG_002]<br>•[SG_003]  | TIP             | TIP shall<br>populate<br>GW<br>Information<br>on the<br>Enhanced<br>SPaT<br>message as<br>invalid | • [E201]<br>• [E204]<br>• [E327] |       |
| TOSCo_Inf_16.3 | The TIP of<br>Infrastructure system<br>shall detect aged or<br>slow green window<br>generation outside of<br>expected periodic<br>transmission rate<br>design parameters.                                                                                                        | Determine means<br>of identifying aged<br>data          | Detect Green<br>Window being<br>determined less<br>frequently<br>(aged data)   | D    | [SG_001]<br>•[SG_002]<br>•[SG_003]  | TIP             | N/A                                                                                               | • [E229]<br>• [E200]             |       |
| TOSCo_Inf_16.4 | If the green window is<br>determined less<br>frequently (aged or<br>slow), i.e., the time<br>interval between<br>successive green<br>window updates is<br>beyond an acceptable<br>threshold, then the TIP                                                                        | Acceptable<br>threshold for<br>successful GW<br>updates | React to Green<br>Window being<br>determined less<br>frequently<br>(aged data) | D    | •[SG_001]<br>•[SG_002]<br>•[SG_003] | TIP             | Stop<br>broadcasting<br>Enhanced<br>SPaT<br>Messages to<br>the TOSCo<br>Vehicles                  | • [E200]<br>• [E229]             |       |

| ID             | Description                                                                                                                                                                                                                                                                         | Safety<br>Parameter                                            | Rationale                                                                   | ASIL | Safety<br>Goals                     | Allocated<br>To | Safe State | FTA<br>Event(s)                                          | Notes                                                                                                                                                                                             |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------|------|-------------------------------------|-----------------|------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | system shall send GW<br>as invalid in the<br>Enhanced SPaT<br>messages to the<br>TOSCo Vehicle.                                                                                                                                                                                     |                                                                |                                                                             |      |                                     |                 |            |                                                          |                                                                                                                                                                                                   |
| TOSCo_Inf_16.5 | The TIP of the<br>connected<br>Infrastructure System<br>shall utilize a Safety<br>Monitor to detect and<br>verify Green Window<br>being provided more<br>often than necessary.                                                                                                      | Determine Safety<br>Monitor<br>mechanism used<br>for detection | Detect Green<br>Window<br>message being<br>generated too<br>frequently      | D    | •[SG_001]<br>•[SG_002]<br>•[SG_003] | TIP             |            | • [E199]<br>• [E184]<br>• [E329]<br>• [E185]<br>• [E186] |                                                                                                                                                                                                   |
| TOSCo_Inf_16.6 | The TIP of the<br>connected<br>Infrastructure System<br>shall utilize a Safety<br>Monitor to detect and<br>verify for invalid<br>Enhanced SPaT<br>Messages.<br>NOTE: Invalid<br>Enhanced SPaT<br>Message includes<br>Incorrect / intermittent<br>(loss) / Excessively<br>generated. | Determine Safety<br>Monitor<br>mechanism used<br>for detection | Detect Invalid<br>Enhanced<br>SPaT<br>Message to the<br>TOSCo<br>Vehicle(s) | D    | •[SG_001]<br>•[SG_002]<br>•[SG_003] | TIP             |            | • [E199]<br>• [E184]<br>• [E329]<br>• [E185]<br>• [E186] | Another method<br>to verify<br>intermittent GW<br>or Enhanced<br>SPaT would be<br>to frequently<br>verify the time<br>stamp of the<br>Enhanced SPaT<br>received to<br>ensure constant<br>updates. |

| ID                     | Description                                                                                                                                                                                                                                                                                     | Safety<br>Parameter                                                                                                       | Rationale                                                                                                                                     | ASIL | Safety<br>Goals                     | Allocated<br>To                                   | Safe State                                                                           | FTA<br>Event(s)                                          | Notes |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------|-------|
| TOSCo_Inf_16.7         | If the TIP has detected<br>Green Window being<br>calculated too<br>frequently or<br>Enhanced SPaT is<br>invalid, then the TIP<br>shall indicate the GW<br>info as invalid in<br>Enhanced SPaT<br>Message to the RSU.<br>NOTE: Resource<br>usage too high leading<br>to communication<br>issues. | Determine "too<br>frequently" for<br>GW<br>Determine<br>maximum<br>Enhanced SpaT<br>broadcast rate                        | Prevent too<br>many<br>Enhanced<br>SPaT<br>messages or<br>determining<br>Green Window<br>more often<br>than necessary<br>to TOSCo<br>Vehicles | D    | •[SG_001]<br>•[SG_002]<br>•[SG_003] | TIP, RSU                                          | Enhanced<br>SPaT<br>Messages<br>shall not be<br>sent out to<br>TOSCo<br>Vehicle(s)   | • [E199]<br>• [E184]<br>• [E329]<br>• [E185]<br>• [E186] |       |
| TOSCo_Inf_16.8         | If the Green window is<br>determined too late or<br>is missing from the TIP<br>of Infrastructure<br>system, then the TIP<br>shall indicate the GW<br>info as invalid in<br>Enhanced SPaT<br>Message to the RSU.                                                                                 | Determine what<br>constitutes "too<br>late" for GW<br>Determine<br>periodic<br>message<br>strategy for "lost"<br>messages | Prevent Loss<br>of Green<br>Window<br>Information<br>from<br>Infrastructure                                                                   | D    | •[SG_001]<br>•[SG_002]<br>•[SG_003] | TIP, RSU                                          | Stop<br>broadcastin<br>g Enhanced<br>SPaT<br>Messages<br>to the<br>TOSCo<br>Vehicles | • [E203]<br>• [E197]<br>• [E227]<br>• [E182]             |       |
| TOSCo_Inf_Veh_16<br>.9 | If the TOSCo Vehicle<br>receives an Enhanced<br>SPaT message<br>without green window<br>information (does not<br>receive Enhanced                                                                                                                                                               |                                                                                                                           | Prevent from<br>collisions that<br>occur due to<br>loss of green<br>window                                                                    | D    | •[SG_001]<br>•[SG_002]<br>•[SG_003] | RSU,<br>OBE,<br>TOSCo<br>Algorithm,<br>Longitudin | Transition to<br>ACC when<br>a lead<br>vehicle is<br>present or<br>Manual            | • [E227]<br>• [E203]<br>• [E197]                         |       |

| ID | Description                                                                                                                                                                                                                                            | Safety<br>Parameter | Rationale                   | ASIL | Safety<br>Goals | Allocated<br>To      | Safe State                                                                         | FTA<br>Event(s) | Notes |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------|------|-----------------|----------------------|------------------------------------------------------------------------------------|-----------------|-------|
|    | SPaT message), then<br>the vehicle shall<br>transition to ACC or<br>Manual depending on<br>the failure mode by<br>deactivating TOSCo.<br>Note: The vehicle shall<br>verify unknown queue<br>and green window to<br>determine loss of<br>Enhanced SPaT. |                     | information<br>from Vehicle |      |                 | al control<br>system | mode if no<br>lead vehicle<br>is present<br>depending<br>on the<br>failure<br>mode |                 |       |

#### Table 30. Assumptions for External Safety Measures

| ID                     | Description                                                                                             | Rationale                                             | ASIL | Safety<br>Goals                  | Allocated<br>to               | Safe<br>State | Notes                                                              |
|------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------|----------------------------------|-------------------------------|---------------|--------------------------------------------------------------------|
| TOSCo_Inf_Veh_17.<br>1 | The TOSCo Vehicle shall be equipped<br>with a forward collision avoidance<br>system (e.g., AEB system). | Availability of a<br>Collision<br>Avoidance<br>System | D    | [SG_001]<br>[SG_002]<br>[SG_003] | External<br>Vehicle<br>System | N/A           | This is a design<br>criterion. Not a<br>functional<br>requirement. |

# **Chapter 7. Functional Safety Analysis**

The objective of safety analyses is to ensure that the risk of a safety goal violation due to systematic faults or random hardware faults is sufficiently low. Safety analyses are performed at the appropriate level of abstraction during the concept and product development phases. Quantitative analysis methods predict the frequency of failures while qualitative analysis methods identify failures but do not predict the frequency of failures. Both types of analysis methods depend upon a knowledge of the relevant fault types and fault models.

To define functional safety requirements, a qualitative Fault Tree Analysis (FTA) was performed. FTA is a logical combination of intermediate events and basic events, which can be assembled using AND / OR logical operators to analyze the effects of component faults on system failures. In safety, the FTA typically begins with a top-level event representing a major hazardous event, and/or the violation of a safety goal or Functional Safety Requirement, as defined in ISO 26262.

## Scope of Fault Tree Analysis for TOSCo

Separate fault trees are developed for each of the safety goals. Fault Tree Analysis was conducted for SG 01 *"Prevent Incorrect Excessive Acceleration due to malfunctions in TOSCo"* and then two more FTAs were performed for SG02 *"Prevent Incorrect Insufficient Deceleration due to malfunctions in TOSCo"* and SG03 *"Prevent Incorrect Excessive Deceleration due to malfunctions in TOSCo"* based on the results from SG01. The malfunctions from the Hazard Analysis were used as the primary inputs to identify failure events for the Fault Tree for both the Vehicle System and the Infrastructure System. Safety Measures for mitigating each of the failure events were also documented throughout the fault tree development process.

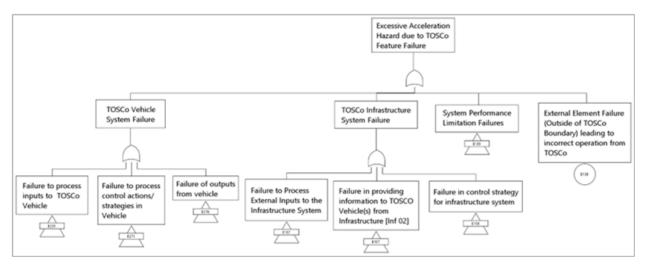
The fault tree analysis was performed using Medini Analyze software. Excerpts from the Fault Tree Analysis and relevant event pages from Medini Analyze for SG01 along with the chain of failure events from the top events (vehicle hazard), to the basic events (individual failure mode) are provided in the report.

The notations used for FTA are note in Table 25 and Table 26.

| Notation type         | Notation                                                                                                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Basic Event           | <pre><new event=""> E02 E02 E02 E02 E02 E02 E01 Event Event E01 E01 E01 E01 E01 E01 E01 E01 E01 E01</new></pre> | A circle (at the bottom of description of event) represents a basic event.<br>It occurs at the lowest level of the FTA. This basic event cannot be (or is not) divided further. This is typically a fault of a given mode.<br>The number in the circle represents the event number.<br>The top-most event in a fault tree, indicating a failure of a subsystem or system. It can be caused by a combination of basic events and/or intermediate events. |
| Intermediate<br>Event | Top-level event<br>TLE1<br>Intermediate event<br>E01<br>Basic event<br>E02                                      | A rectangle (below the description) represents in intermediate<br>event. It can occur if a certain combination of underlying<br>events occurs.                                                                                                                                                                                                                                                                                                          |
| AND gate              |                                                                                                                 | This shape represents an AND gate. When all events below<br>the AND gate occur, then the event above the AND gate<br>occurs.                                                                                                                                                                                                                                                                                                                            |
| OR gate               |                                                                                                                 | This shape represents an OR gate. When any one of the events below the OR gate occur, then the event above the OR gate occurs.                                                                                                                                                                                                                                                                                                                          |
| NOT gate              | Å                                                                                                               | This shape represents a NOT gate. When the event given as input to NOT gate does not occur, then the event above the NOT gate occurs.                                                                                                                                                                                                                                                                                                                   |

| Table 31. | Notations | Used for | Fault 1 | Tree Analysi | s |
|-----------|-----------|----------|---------|--------------|---|
|-----------|-----------|----------|---------|--------------|---|

| Notation type | Notation              | Description                                                                                                                                                                                |
|---------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transfer gate | Basic event           | The triangle (at the bottom of description) represents a transfer gate. An event represented with transfer gate implies there is a presence of a sub-tree and a transfer to that sub-tree. |
| Notes         | Event<br>E03<br>NOTES | Notes provide explanation or comments made for an event                                                                                                                                    |


The color notations used for events are as follows:

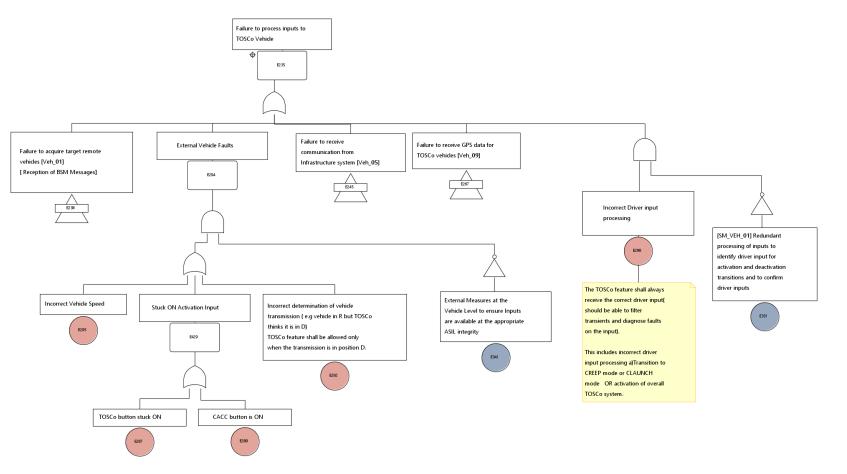
| Color Notation         | Description                                                                                                                        |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Hazardous event<br>E04 | The red color code is used to denote an event that can a result in a hazard and can compromise the safety.                         |
| Not a hazardous event  | The green color code is used to denote an event that does not result in a hazard. However, it can represent a reliability concern. |
| Safety mechanism       | The blue color code is used to denote a safety mechanism, which is used to mitigate or reduce the risk.                            |

## **Development of FTA**

For TOSCo system to construct an FTA, the followings steps were performed:

- 1. Define top-level events for FTA. In the case of TOSCo system, the top-level events are the vehiclelevel hazards that are identified from the Hazard Analysis and Risk Assessment. Because insufficient acceleration is a hazard of ASIL level QM, an FTA was not constructed for it.
- 2. For each top-level event (one for each safety goal), the sources of failure modes from the TOSCo Infrastructure system and TOSCo vehicle(s) were identified. Additional sources of failures regarding Safety of the Intended Functionality (SOTIF) and external elements outside TOSCo system have been considered (such as vehicle powertrain control system, braking control system) that may impact TOSCo behavior but not evaluated in detail. The FTA only focused on the EE malfunctions and failure modes of the TOSCo Feature that violated functional safety as per ISO 26262. Figure 10 shows the fault tree with higher-level events.




Source: Crash Avoidance Metrics Partners LLC (CAMP) Vehicle to Infrastructure (V2I) Consortium, 2022

#### Figure 10. Top-level FTA Events for the Excessive Acceleration Hazard of the TOSCo System

- 3. For TOSCo Vehicle and TOSCo Infrastructure system, failure events with respect to input processing, control logic and output behavior were considered for the intermediate level events of the fault tree.
- 4. The intermediate events were further broken down to the malfunctions and repeated the process until the events cannot be broken down further.
- 5. After this process, by discussion with stakeholders, safety mechanism was proposed for each failure event and merged into existing fault trees.
- 6. A concise Fault Tree Analysis was performed for SG02 and SG03 based on the results of the Fault Tree Analysis for SG01.

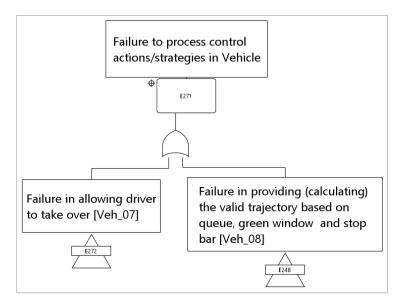
NOTE: The FTA figures below constitute the fault tree structure for SG01 "Prevent Excessive Acceleration" and represent some of the high-level events of the analysis.


#### A) Input Processing Failures (E01)



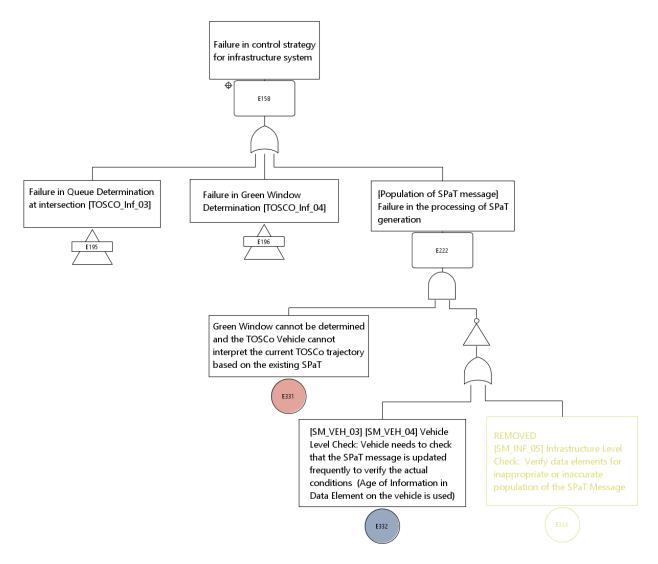
Source: Crash Avoidance Metrics Partners LLC (CAMP) Vehicle to Infrastructure (V2I) Consortium, 2022

#### Figure 11. Input Processing Failures for TOSCo Vehicle


U.S. Department of Transportation Intelligent Transportation Systems Joint Program Office



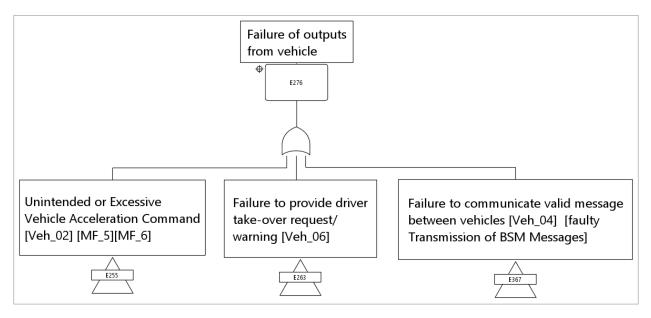
Source: Crash Avoidance Metrics Partners LLC (CAMP) Vehicle to Infrastructure (V2I) Consortium, 2022


#### Figure 12. Input Processing Failures for TOSCo Infrastructure

#### **B)** Control Strategy Failures

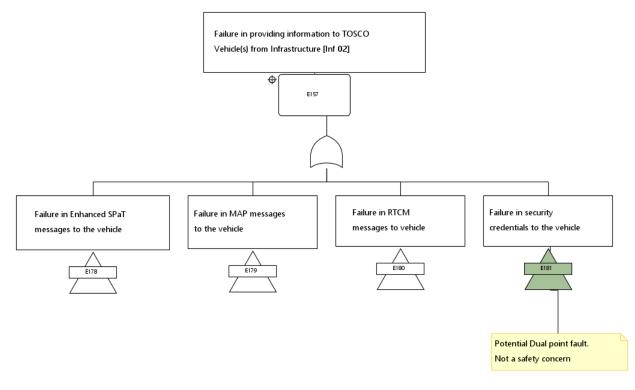


Source: Crash Avoidance Metrics Partners LLC (CAMP) Vehicle to Infrastructure (V2I) Consortium, 2022


Figure 13. Control Strategy Failures in TOSCo Vehicle



Source: Crash Avoidance Metrics Partners LLC (CAMP) Vehicle to Infrastructure (V2I) Consortium, 2022


Figure 14. Control Strategy Failures in TOSCo Infrastructure

#### **C) Output Strategy Failures**



Source: Crash Avoidance Metrics Partners LLC (CAMP) Vehicle to Infrastructure (V2I) Consortium, 2022





Source: Crash Avoidance Metrics Partners LLC (CAMP) Vehicle to Infrastructure (V2I) Consortium, 2022

#### Figure 16. Output Strategy Failures in TOSCo Vehicle

#### D) Complete FTA

The complete fault tree for the excessive acceleration hazard is obtained by expanding the fault tree segments illustrated in Figure 11 through Figure 16. Figure 10 is the top of the fault tree. To obtain a complete fault tree for the entire TOSCo feature, the same approach was utilized to obtain fault trees for each of the three remaining hazards.

The transfer gates from each of the figures below point to other sub trees where the events represent the failure modes for individual safety related functionalities of both the TOSCo Vehicle and the Infrastructure. Safety measures and diagnostic coverages that can be implemented in the system design to mitigate such failure modes are documented and can be found in the Fault Tree Report. Fault Tree Analysis for SG 02 and SG 03 hazards can also be found in the Fault Tree Report.

## Findings from the FTA

The following are the findings from the Fault Tree Analysis:

- The safety measures identified to mitigate specific safety critical failure modes for both the vehicle and the infrastructure do not specify a physical architecture or solution on a component to achieve diagnostics, rather a methodology is proposed to identify the safety parameters for each failure modes and a design independent strategy is documented as a mitigation measure. The vehicle integrators would use these recommendations to determine their own architectures and safety solutions as per the relevant ASIL criteria.
- In case of driver confirmation, it was identified that separate sub fault trees need to be developed for the following:
  - Events towards faulty activation of CLAUNCH or CREEP
  - o Events towards unintended activation of the TOSCo System.
- The Safe State allocated for various failure modes needs to be evaluated with respect to the underlying TOSCo vehicle scenario as well to understand whether the vehicle needs to transition to Free Flow (CACC), Manual Mode (Transition to Driver) or ACC (expect other collision avoidance systems to mitigate hazards). A study to evaluate these use cases by the vehicle integrator would support determining valid safe states.
- In certain cases, if the TOSCo vehicle is unable to transition to Safe State, it is expected that the driver is still informed or warned to ensure the system is taken to some relevant emergency operation that is within driver control.
- The Fault Tree Analysis identified certain safety critical vehicle functions that are documented in the revised Item Definition. These include the following:
  - o Driver inputs to TOSCo Vehicle
  - o Communicate with external inputs (vehicle speed, PRNDL) to TOSCo Vehicle
  - Receive Clock Data from External GPS
- External Safety critical inputs to the TOSCo vehicle were identified as follows:
  - o Vehicle Speed
  - Vehicle Transmission (PRNDL) State
  - Vehicle Gear State

- o d) Accelerator Pedal or Brake Pedal Input
- o e) TOSCo Activation by the driver
- The current design does not have provision for detecting and controlling incorrect GPS faults. Hence, a safety requirement has been allocated to the HDOP measurement for GPS position to ensure the system does not exceed its tolerable thresholds of accuracy.
- Certain special scenarios were identified while evaluating failure modes of acquiring BSM Data from Target Remote Vehicle(s). It is assumed that if BSM is not available from a particular vehicle, the other vehicles in the string would re-adjust trajectory depending on their current position in the queue.
- For Safety relevant communication from the Infrastructure (MAP), the vehicle does not have the capability to determine MAP accuracy. It is dependent on the Infrastructure to send out an "undefined" or "no" data for the vehicle to transition to Safe State.
- 12. Evaluation of Correction Data for safety criticality shall be considered during Vehicle Build and Test. It should be noted that RTCM generator cannot know if the correction data is valid or not. A safety mechanism is not currently identified.
- 13. The Connected Infrastructure shall verify the data elements in the processing of the Enhanced SPaT generation by monitoring the frequency and accuracy of the Green Window that is sent out to the TOSCo Vehicles(s). This can be done through periodic Interval post processing checks, verification of aged data or using a safety monitor at the Infrastructure depending on the failure mode.

# **Chapter 8. Conclusions and Summary**

An introduction to the technical scope of the TOSCo feature was provided along with a background of the ISO 26262 processes for functional safety. The applicable safety relevant work products for ISO 26262 specific to the TOSCo Project included only the conceptual phase requirements. That included creating an item boundary surrounding the features and functions of TOSCo.

An Item Definition was created which considered assumptions of behavior of the system and listed out vehiclelevel functions to be performed by the system. The safety development followed closely to the V-model of product development and was linked to the TOSCo System Specification and the System Architecture.

A hazard analysis was completed that included identification of malfunctions from the TOSCo feature and then identification of vehicle level hazards. Four vehicle-level hazards were identified which underwent a thorough hazard analysis processes by looking at multiple vehicle operational situations. The Hazard classification methods of ISO 26262 was utilized to determine the "ASIL" level for each hazard which resulted in creating safety goals or top-level safety requirements for the TOSCo system.

A functional safety concept was developed that utilized the parameters and guidelines of ISO 26262 to develop safety requirements and allocate them to the respective safety critical modules of the TOSCo feature. ASILs were assigned to each functional requirement along with identification of safe states, in case of a potential failure. These requirements focused on only one TOSCo boundary and its operating environment. The vehicle parameters that could be integrated to TOSCo were left generic in nature and could be applicable for any potential interface.

The functional safety requirements can be refined for more technical detail when the preliminary system design physical architecture is available. Safety mechanisms for the system components, requirements for the actual elements and interfaces, and the fault handling capabilities would be defined in the technical safety requirements during system design and implementation. A System Safety Analysis through a Fault Tree Analysis (FTA) was also performed for the overall physical system along with its external interfaces to verify the completeness and correctness of the functional safety requirements and verify the effectiveness of the safety mechanisms based on identified causes of faults and the effects of failures. The FTA also provided a complete traceability to the malfunctions of the hazard analysis and primary functions from the Item Definition.

#### Summary of Updates for Phase 2

Below is a summary of updates specific to Phase 2 of the project and changes and modifications that were made for the functional safety work products.

- Traffic Infrastructure Sub-system is now within scope of the TOSCo Item Boundary (including external influences on the system and communication channel with TOSCo Vehicle).
- Updated Hazard Analysis identified highest ASIL criteria as ASIL D for "Excessive Acceleration" and "Insufficient Deceleration" hazard for a specific scenario where the TOSCo Vehicle is "too close to the intersection."
- Assumptions on infrastructure functionality (such as queue object detection, Green Window determination and their limitations) has been documented in the Hazard Analysis and Functional Safety Concept.

#### Summary of Safety Relevant Functionality for the Infrastructure Sub-system

- Queue detection and determination of queue by the infrastructure processor are identified to be non safety critical and only provide enhancements and optimization to the TOSCo trajectory calculations.
- Common Time Source for Clock Synchronization shall be used by all infrastructure elements to ensure data accuracy.
- In case of SPaT determination by the infrastructure certain safety parameters have been considered to mitigate failure modes as follows:
  - Verification of Periodicity of valid SPaT within logical bounds
  - Accuracy of the content of the data elements
  - Verify if data elements are populated
- Green Window determination that does not match the expected periodic rates within tolerances result in loss of enhanced SPaT to the TOSCo Vehicle(s).
- The MAP configuration is broadcasted periodically to the TOSCo vehicle.
- No enhanced SPaT values are sent out to the TOSCo vehicle to indicate that TOSCo functionality needs to be disabled in case of identification of relevant safety critical faults (MAP, Green Window Prediction, Time Synchronization) in the infrastructure. The TOSCo vehicle shall transition to safe state based on this "undefined" value from the infrastructure.

# **Chapter 9. Future Actions**

The following is a list of future actions:

- Safety relevant functionality of correction data (RTCM) to be reviewed after Vehicle Build and Test.
- Hazard Analysis for certain scenarios to be reviewed in the next iteration to verify the appropriate ASIL criteria (i.e., CSTOP at very low speed).
- Safety "performance" parameters with appropriate safety threshold(s)/margin(s) need to be completely identified for all functional safety requirements for test, design, and validation purposes.
- Any new failure modes identified in the next iteration will be documented in the Functional Safety Concept. Diagnostic measures or solutions to applicable failure modes also need to be reviewed in the next iteration.
- Hazardous Behavior of TOSCo due to System Performance Limitations based on Safety of the Intended Functionality (SOTIF) may be considered in the next iteration of safety analysis.
- Safe state strategy needs to be reviewed for each of the safety goals at a TOSCo vehicle level based on the updated functional architecture of the system. A review of the Hazard Analysis and the functional safety requirements shall be performed after completion of Phase 2b which would lead to dedicated safe state strategy for individual features and functionalities of the TOSCo Feature.

# Chapter 10.References and Input Documents

[1] ISO 26262:2018, "Road Vehicles - Functional Safety," International Organization for Standardization, Second edition.

[2] Considerations for ISO 26262 ASIL Hazard Classification, SAE J2980, May 2015.

[3] Guenther, Hendrik-Joern; Williams, Richard; Yoshida, Hiroyuki; Yumak, Tuncer; Hussain, Shah; Naes, Tyler; Vijaya Kumar, Vivek; Probert, Neal; Sommerwerk, Kay; Bondarenko, Dennis; Wu, Guoyuan; Deering, Richard K.; Goudy, R., "*Traffic Optimization for Signalized Corridors (TOSCo) Phase 1 Project: Vehicle System Requirements and Architecture Specification,*" <u>https://rosap.ntl.bts.gov/view/dot/50738</u>, 2019.

[4] Balke, Kevin N.; Florence, David H.; Feng, Yiheng; LeBlanc, David J.; Wu, Guoyuan; Guenther, Hendrik-Joern; Probert, Neal; Vijaya Kumar, Vivek; Williams, Richard; Yoshida, Hiroyuki; Yumak, Tuncer; Deering, Richard K.; Goudy, R., "Traffic Optimization for Signalized Corridors (TOSCo) Infrastructure System Requirements and Architecture Specification," <u>https://rosap.ntl.bts.gov/view/dot/50739</u>, 2019.

# **APPENDIX A. Hazard Classification**

The hazard classification scheme comprises the determination of the severity, the probability of exposure, and the controllability associated with the hazardous events of the item. The severity represents an estimate of the potential harm in a particular driving situation while the probability of exposure is determined by the corresponding situation. The controllability rates how easy or difficult it is for the driver or other road traffic participant to avoid the considered accident type in the considered operational situation. For each hazard, depending on the number of related hazardous events, the classification will result in one or more combinations of severity, probability of exposure, and controllability.

### Exposure

Exposure to a vehicle operational situation is based on one of the five levels as shown in Table 27 below. The objective in the exposure determination is to comprehend realistic situations including normal driving conditions and adverse driving conditions. However, it should be noted that different traffic rules, environmental conditions, etc., influence the situations under consideration and may lead to a different exposure.

| Class | Description             | Informative Criteria for Exposure Based<br>on Frequency               | Informative Criteria for<br>Exposure Based on Duration |
|-------|-------------------------|-----------------------------------------------------------------------|--------------------------------------------------------|
| E0*   | Incredible              | Not specified                                                         | Not specified                                          |
| E1    | Very low<br>probability | Occurs less often than once a year for the great majority of drivers. | Not specified                                          |
| E2    | Low probability         | Occurs a few times a year for the great majority of drivers.          | <1 % of average operating time                         |
| E3    | Medium<br>probability   | Occurs once a month or more often for an average driver.              | 1 % to 10 % of average<br>operating time               |
| E4    | High probability        | Occurs during almost every drive on average.                          | >10 % of average operating time                        |

#### Table 33. Exposure Classes

\* No ASIL is assigned for E0

### Severity

To describe the severity, the Abbreviated Injury Scale (AIS) classification is used. The AIS represents a classification of the severity of injuries The Severity Class will be assigned to a given hazardous event based on a representative hazardous event scenario. The Severity Class of the potential harm caused by a particular hazardous event is assigned to one of four levels as shown in Table 28 below.

| Class | Description                                                          | Reference for Single Injuries (from AIS Scale)                                                      |
|-------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| S0*   | No Injuries                                                          | AIS 0 and less than 10% probability of AIS 1-6; or damage that cannot be classified safety related. |
| S1    | Light & Moderate Injuries                                            | More than 10% probability of AIS 1-6 (and not S2 or S3)                                             |
| S2    | Severe and Life-threatening<br>Injuries, Survival Probable           | More than 10% probability of AIS 3-6 (and not S3)                                                   |
| S3    | Life-threatening Injuries<br>(Survival Uncertain), Fatal<br>Injuries | More than 10% probability of AIS 5-6                                                                |

## Controllability

To determine the controllability class for a given hazard, an estimation of the probability that the representative driver or other persons involved can influence the situation to avoid harm is made. The controllability of a hazardous event is assigned to one of four levels as shown in Table 29 below.

| Class | Title                                  | Description                                                                                                                                                                                                                                                         |
|-------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C0*   | Controllable in general                | If dedicated regulations exist for a<br>particular hazard, Controllability<br>may be rated C0 when it is<br>consistent with the corresponding<br>existing experience concerning<br>sufficient Controllability. For use<br>of C0 refer ISO 26262-3:2011,<br>7.4.3.8. |
| C1    | Simply controllable                    | 99% or more of all drivers or<br>other traffic participants are<br>usually able to avoid the specified<br>harm.                                                                                                                                                     |
| C2    | Normally controllable                  | 90% or more of all drivers or<br>other traffic participants are<br>usually able to avoid the specified<br>harm.                                                                                                                                                     |
| C3    | Difficult to control or uncontrollable | Less than 90% of all drivers or<br>other traffic participants are<br>usually able to avoid the specified<br>harm.                                                                                                                                                   |

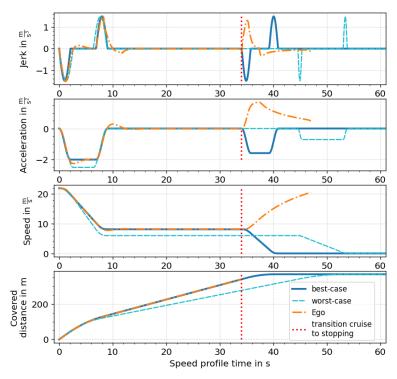
#### Table 35. Controllability Classes

\* No ASIL is assigned for C

# **APPENDIX B.** Risk Mitigation for On-road Testing

A Risk Mitigation Strategy was implemented during TOSCo Phase 2 system testing to mitigate potential TOSCo failures in the situation where the vehicle is approaching an intersection during a red signal phase with no queue present and the vehicle is 'too close' to the stop bar for the driver to intervene and bring the vehicle to a stop before entering the intersection. This condition was identified as an ASIL D risk during the TOSCo functional safety analysis. This mitigation strategy implemented is not intended as a recommendation for production vehicles. It relies on trained driver(s)<sup>[1]</sup> assessing the state of health of the TOSCo system during red light approaches when prompted by an electronically independent warning system at a speed / distance from the stop bar where the kinematics of the situation are still controllable as described below.

# **Risk Mitigation Approach**


There are two key requirements needed for a trained driver to mitigate the risk of a TOSCo system failure while approaching a red light with no queue present:

- The approach trajectory must be consistent from intersection to intersection, so the driver can recognize deviations, and controllable, so driver intervention does not disturb surrounding traffic.
- An independent warning system separate from TOSCo must provide an indication to the driver at the point during the approach when evaluation of TOSCo behavior is needed to assess the system state of health.

To achieve the first element, a 'virtual stop bar' is introduced into the approach speed profile calculation upstream of the physical stop bar (which is painted on the road and defined in the MAP message). The TOSCo vehicle calculates a CSC approach profile to arrive at the virtual stop bar at the point in time when the signal head is expected to turn green. This position is dynamically adjusted depending on the CSC approach cruise speed so that a CSTOP profile from this virtual stop bar position would bring the vehicle to a stop in front of the physical stop bar in case the transition to green does not happen as expected. If the signal does transition to green as expected, then the CSTOP profile is discarded, and a new CSC-UP profile is implemented to accelerate the vehicle through the intersection.

Figure 17 illustrates the intended CSC approach profile from vehicle level simulation. As the vehicle approaches the red light it executes a CSC-DOWN profile to lower its approach speed at the virtual stop bar and extends this to plan a CSTOP at the stop bar in case the light doesn't change as expected. In this simulation the signal changes to green at the 34 second mark, as indicated by the vertical dashed red line, and the vehicle recalculates a CSC-UP solution which it then follows, discarding the CSTOP.

<sup>11</sup> For the purposes of TOSCo testing a 'trained' driver is defined as an individual who has completed the equivalent of SAE level 2 driver training (DL2 as defined in SAE J3300\_202005) for the purpose of operating non-production automated vehicles in a controlled manner under non-limit handling conditions.



Source: Crash Avoidance Metrics Partners LLC (CAMP) Vehicle to Infrastructure (V2I) Consortium, 2022

Figure 17 – Risk Mitigation Speed Profile Approaching a Red Light

The second element is attained using an independent electronic device dubbed a 'virtual cone' located inside the vehicle which issues an audible tone to alert the trained driver when the vehicle is 90 m away from the stop bar, having slowed to a speed of 35 mph (56.3 km/h). The parameters of 90 m and 35 mph (maximum speed are derived from a traffic engineering perspective to ensure that the driver can bring the vehicle to a full stop without having to introduce an emergency braking maneuver. The virtual cone utilizes real time GNSS location information about the vehicle and compares this to a set of fixed alert points established for each of the intersections along the corridor to know when to issue the driver alert.

When hearing this notification, the trained driver checks to see if:

- The signal head is now green and the TOSCo vehicle is speeding up under CSC-UP control
- The signal head remains red and the TOSCo vehicle is slowing down under CSC-DOWN control or stopping under CSTOP control

If neither of these two conditions are true, a system fault is likely and the trained driver takes over longitudinal control of the vehicle overriding (accelerator pedal) or disengaging (brake pedal) TOSCo as appropriate.

## **Impact on Functional Safety**

The acoustic notification and reduction of TOSCo operating domain during safety critical malfunctions act as an external safety measure to reduce risk from TOSCo vehicle malfunctions when entering an intersection. The overall functional safety risk for TOSCo is still rated at ASIL D as the same hazardous behavior exists during TOSCo malfunctions. However introduction and implementation of this additional safety measure

ensures that the overall risk can be controlled and avoided for all operating conditions during on-road testing using trained drivers.

# APPENDIX C. Traceability of TOSCo Functions, Hazards and Scenarios

Table 30 below provides a traceability of all item functions for the TOSCo Feature with respect to the major driving scenarios from the HARA and the associated hazard and ASIL. This is a concise version of the hazard analysis and provides the ability to link safety functions and their applicable safety requirements to the applicable driving scenarios. The highest ASIL identified for each function from the table below would be allocated the same Safety Goal and ASIL to all its applicable functional safety requirements. For example, All FSRs under "Requirements for driver confirmation to TOSCo Vehicle" would be allocated ASIL C with safety Goal "Prevent Excessive Acceleration."

This prevents over design of certain functionality with respect to functional safety, and restricts the development strategy only to the applicable level of safety for that function (a failure of a certain function maybe less severe or more controllable compared to a different safety critical function). Applying ASIL D safety criteria universally to all components of the TOSCo Feature could lead to unnecessary complexity of the system.

NOTE: The highest ASIL applicable for each Item Function is indicated in bold underline text in Table 31.

| FSR Table<br>(Section ID)                                                | Item Function<br>(based on Item<br>Definition)   | TOSCo Driving Scenarios                                            | Hazard          | ASIL |
|--------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------|-----------------|------|
| 1. Requirements<br>for Driver<br>Confirmation to<br>TOSCo Vehicle:       | Driver<br>Confirmation to<br>TOSCo Vehicle       | Vehicle decelerating to stop or already stopped (no queue)         | Excessive Accel | С    |
|                                                                          |                                                  | Vehicle decelerating to stop or already stopped (No queue)         |                 | В    |
| 2. Requirements for Communication                                        | Communication<br>with External<br>Vehicle Inputs | Vehicles decelerating to stop (static queue or growing queue)      |                 | с    |
| with External<br>Vehicle Inputs:                                         |                                                  | Vehicles accelerating to leave queue (dissipating queue)           |                 | с    |
|                                                                          |                                                  | No vehicle in the front (No queue) (Too close to the intersection) |                 | D    |
| 2. Requirements<br>for Communication<br>with External<br>Vehicle Inputs: | Communication<br>with external<br>Vehicle Inputs | No vehicle in the front (No queue)                                 | All Hazards     | В    |

#### Table 36: Traceability with Item Function, Hazard and ASIL

| FSR Table<br>(Section ID)                                                         | Item Function<br>(based on Item<br>Definition) | TOSCo Driving Scenarios                                            | Hazard          | ASIL |
|-----------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------|-----------------|------|
|                                                                                   |                                                | No vehicle in the front (No queue) (Too close to the intersection) |                 | QM   |
| 3. Safety<br>Requirements for<br>Communication                                    | Acquire Target<br>Remote                       | Vehicles accelerating to leave queue (dissipating queue)           |                 | В    |
| with Remote<br>Vehicles:                                                          | Vehicle(s)                                     | Vehicles decelerating to stop (static queue or growing queue)      |                 | С    |
|                                                                                   |                                                | Vehicle decelerating to stop or already stopped (no queue)         |                 | С    |
| 3. Safety<br>Requirements for<br>Communication<br>with Remote<br>Vehicles:        | Acquire Target<br>Remote<br>Vehicle(s)         | No vehicle in the front (No queue)                                 | All Hazards     | QM   |
|                                                                                   |                                                | Vehicle decelerating to stop or already stopped (no queue)         |                 | В    |
| 8. Safety<br>Requirements for<br>Propulsion                                       | Provide<br>Acceleration<br>Commands            | Vehicles decelerating to stop (static queue or growing queue)      |                 | С    |
| Commands from<br>TOSCo Vehicle(s):                                                |                                                | Vehicles accelerating to leave queue (dissipating queue)           |                 | С    |
|                                                                                   |                                                | No vehicle in the front (No queue) (Too close to the intersection) |                 | D    |
| 8. Safety<br>Requirements for<br>Propulsion<br>Commands from<br>TOSCo Vehicle(s): | Provide<br>Acceleration<br>Command             | No vehicle in the front (No queue)                                 | Excessive Accel | В    |
|                                                                                   |                                                | No vehicle in the front (No queue) (Too close to the intersection) |                 | QM   |
| 8. Safety<br>Requirements for<br>Propulsion<br>Commands from<br>TOSCo Vehicle(s): | Provide                                        | Vehicles decelerating to stop (static queue or growing queue)      |                 | QM   |
|                                                                                   | Acceleration<br>Commands                       | Vehicles accelerating to leave queue (dissipating queue)           |                 | QM   |
|                                                                                   |                                                | Vehicle decelerating to stop or already stopped (No queue)         |                 | QM   |

| FSR Table<br>(Section ID)                                                         | Item Function<br>(based on Item<br>Definition) | TOSCo Driving Scenarios                                               | Hazard                    | ASIL |
|-----------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------|---------------------------|------|
| 8. Safety<br>Requirements for<br>Propulsion<br>Commands from<br>TOSCo Vehicle(s): | Provide<br>Acceleration<br>Commands            | No vehicle in the front (No Queue)                                    | Insufficient Acceleration | QM   |
|                                                                                   |                                                | Vehicles accelerating to leave queue (dissipating queue)              |                           | В    |
| 8. Safety<br>Requirements for                                                     | Provide<br>Deceleration                        | Vehicles decelerating to stop (static queue or growing queue)         |                           | с    |
| Propulsion<br>Commands from<br>TOSCo Vehicle(s):                                  | Commands                                       | Vehicle decelerating to stop or already stopped (no queue)            |                           | С    |
|                                                                                   |                                                | No vehicle in the front (No queue) (Too close to the intersection)    |                           | D    |
| 8. Safety<br>Requirements for<br>Propulsion<br>commands from<br>TOSCo Vehicle(s): | Provide<br>Deceleration<br>Commands            | No vehicle in the front (No queue)                                    | Insufficient Deceleration | В    |
| 8. Safety<br>Requirements for                                                     | Provide<br>Deceleration                        | No vehicle in the front (No queue) (Too<br>close to the intersection) |                           | В    |
| Propulsion<br>Commands from<br>TOSCo Vehicle(s):                                  | Commands                                       | Vehicles decelerating to stop (static queue or growing queue)         |                           | None |
|                                                                                   |                                                | Vehicles accelerating to leave queue (dissipating queue)              |                           | None |
|                                                                                   |                                                | Vehicle decelerating to stop or already stopped (no queue)            |                           | None |
| 8. Safety<br>Requirements for<br>Propulsion<br>Commands from<br>TOSCo Vehicle(s): | Provide<br>Deceleration<br>Commands            | No vehicle in the front (No queue)                                    | Excessive Deceleration    | В    |
| 3. Safety                                                                         | Communicate                                    | No vehicle in the front (No queue) (Too close to the intersection)    |                           | QM   |
| Requirements for<br>Communication<br>with Remote                                  | with other<br>Remote                           | Vehicles accelerating to leave queue (dissipating queue)              |                           | В    |
| Vehicles:                                                                         | Vehicles                                       | Vehicles decelerating to stop (static queue or growing queue)         |                           | С    |

| FSR Table<br>(Section ID)                                                                                         | Item Function<br>(based on Item<br>Definition)     | TOSCo Driving Scenarios                                            | Hazard      | ASIL |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------|-------------|------|
|                                                                                                                   |                                                    | Vehicle decelerating to stop or already stopped (no queue)         |             | с    |
| 3. Safety<br>Requirements for<br>Communication<br>with Remote<br>Vehicles:                                        | Communicate<br>with other<br>Remote<br>Vehicles    | No vehicle in the front (No queue)                                 | All Hazards | QM   |
| 4. Safety                                                                                                         |                                                    | Vehicles accelerating to leave queue (dissipating queue)           |             | В    |
| Requirements for Receiving                                                                                        | Communicate                                        | Vehicles decelerating to stop (static queue or growing queue)      |             | С    |
| Communication<br>from Infrastructure<br>(Enhanced SPaT                                                            | with<br>Infrastructure                             | Vehicle decelerating to stop or already stopped (no queue)         |             | с    |
| and MAP):                                                                                                         |                                                    | No vehicle in the front (No queue) (Too close to the intersection) |             | D    |
| 4. Safety<br>Requirements for<br>Receiving<br>Communication<br>from Infrastructure<br>(Enhanced SPaT<br>and MAP): | Communicate<br>with<br>Infrastructure              | No vehicle in the front (No queue)                                 | All Hazards | В    |
|                                                                                                                   |                                                    | Vehicles accelerating to leave queue (dissipating queue)           |             | В    |
| 9. Safety<br>Requirements for<br>Providing Driver                                                                 | Provide Driver<br>Take-over                        | Vehicle decelerating to stop or already stopped (no queue)         |             | с    |
| Take-over<br>Requests or<br>Warning:                                                                              | Request/<br>Warning                                | Vehicles decelerating to stop (static queue or growing queue)      |             | с    |
| warning.                                                                                                          |                                                    | No vehicle in the front (No queue) (Too close to the intersection) |             | D    |
| 9. Safety<br>Requirements for<br>Providing Driver<br>Take-over<br>Requests or<br>Warning:                         | Provide Driver<br>Take-over<br>Request/<br>Warning | No vehicle in the front (No queue)                                 | All Hazards | В    |
| 6. Safety<br>Requirements for                                                                                     | Allow Driver<br>Take-over                          | Vehicles accelerating to leave queue<br>(dissipating queue)        |             | В    |

| FSR Table<br>(Section ID)                                                               | Item Function<br>(based on Item<br>Definition)                                   | TOSCo Driving Scenarios                                               | Hazard                            | ASIL |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------|------|
| Driver Take over from TOSCo:                                                            |                                                                                  | Vehicle decelerating to stop or already stopped (no queue)            |                                   | С    |
|                                                                                         |                                                                                  | Vehicles decelerating to stop (static queue<br>or growing queue)      |                                   | С    |
|                                                                                         |                                                                                  | No vehicle in the front (No queue) (Too close to the intersection)    |                                   | D    |
| 6. Safety<br>Requirements for<br>Driver Take-over<br>from TOSCo:                        | Allow Driver<br>Take-over                                                        | No vehicle in the front (No queue)                                    | All Hazards                       | в    |
| 7. Safety                                                                               | Provide the                                                                      | No vehicle in the front (No queue)                                    |                                   | В    |
| Requirements for<br>Valid Trajectory<br>Calculation for                                 | Trajectory<br>based on<br>Queue, Green                                           | Vehicles accelerating to leave queue (dissipating queue)              |                                   | В    |
| TOSCo Vehicles:                                                                         | Window, and<br>Stop Bar                                                          | Vehicle decelerating to stop or already stopped (no queue)            |                                   | С    |
|                                                                                         |                                                                                  | No vehicle in the front (No queue) (Too close to the intersection)    |                                   | D    |
| 7. Safety<br>Requirements for<br>Valid Trajectory<br>Calculation for<br>TOSCo Vehicles: | Provide the<br>Trajectory<br>Based on<br>Queue, Green<br>Window, and<br>Stop Bar | Vehicles decelerating to stop (static queue or growing queue)         | All Hazards                       | с    |
| 5. Safety                                                                               | Receive GPS                                                                      | No vehicle in the front (No queue)                                    |                                   | В    |
| Requirements for<br>GPS Reception for<br>TOSCo Vehicles:                                | Data for TOSCo<br>Vehicle (s)                                                    | Vehicles accelerating to leave queue (dissipating queue)              |                                   | В    |
|                                                                                         |                                                                                  | Vehicle decelerating to stop or already stopped (no queue)            |                                   | С    |
| 5. Safety<br>Requirements for<br>GPS reception for<br>TOSCo Vehicles:                   | Receive GPS<br>Data for TOSCo<br>Vehicle (s)                                     | Vehicles decelerating to stop (static queue or growing queue)         | Excessive Vehicle<br>Deceleration | с    |
| 5. Safety<br>Requirements for<br>GPS reception for<br>TOSCo Vehicles:                   | Receive GPS<br>Data for TOSCo<br>Vehicle (s)                                     | No vehicle in the front (No queue) (Too<br>close to the intersection) | Excessive Vehicle<br>Acceleration | D    |
| 16. Safety<br>Requirements for                                                          | Provide<br>Information to                                                        | No vehicle in the front (No queue)                                    |                                   | В    |

| FSR Table<br>(Section ID)                                                                                          | Item Function<br>(based on Item<br>Definition)                         | TOSCo Driving Scenarios                                                                                | Hazard      | ASIL |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------|------|
| Communicating<br>Enhanced SPaT<br>Message to<br>TOSCo Vehicle(s):                                                  | TOSCo<br>Vehicle(s)<br>(Enhanced<br>SPaT)                              | Vehicles accelerating to leave queue<br>(dissipating queue)<br>Vehicle decelerating to stop or already |             | B    |
|                                                                                                                    |                                                                        | stopped (no queue)<br>No vehicle in the front (No queue) (Too<br>close to the intersection)            |             | D    |
| 16. Safety<br>Requirements for<br>Communicating<br>Enhanced SPaT<br>Message to<br>TOSCo Vehicle(s):                | Provide<br>Information to<br>TOSCo<br>Vehicle(s)<br>(Enhanced<br>SPaT) | Vehicles decelerating to stop (static queue or growing queue)                                          | All Hazards | С    |
|                                                                                                                    |                                                                        | No vehicle in the front (No queue)                                                                     |             | В    |
| 14. Safety<br>Requirements for<br>MAP Messages                                                                     | Provide<br>Information to                                              | Vehicles accelerating to leave queue (dissipating queue)                                               |             | В    |
| Sent between<br>TOSCo<br>Infrastructure and                                                                        | TOSCo<br>Vehicle(s)<br>(MAP)                                           | Vehicle decelerating to stop or already stopped (no queue)                                             |             | С    |
| TOSCo Vehicle(s):                                                                                                  |                                                                        | No vehicle in the front (No queue) (Too close to the intersection)                                     |             | D    |
| 14. Safety<br>Requirements for<br>MAP Messages<br>Sent between<br>TOSCo<br>Infrastructure and<br>TOSCo Vehicle(s): | Provide<br>Information to<br>TOSCo<br>Vehicle(s)<br>(MAP)              | Vehicles decelerating to stop (static queue or growing queue)                                          | All Hazards | С    |
|                                                                                                                    |                                                                        | No vehicle in the front (No queue)                                                                     |             | В    |
| 12. Safety<br>Requirements for                                                                                     | Provide information to                                                 | Vehicles accelerating to leave queue (dissipating queue)                                               |             | В    |
| RTCM data and<br>Security for<br>Infrastructure:                                                                   | TOSCo<br>Vehicle(s)<br>(RTCM)                                          | Vehicles decelerating to stop (static queue or growing queue)                                          |             | С    |
|                                                                                                                    |                                                                        | Vehicle decelerating to stop or already stopped (no queue)                                             |             | С    |
| 12. Safety<br>Requirements for<br>RTCM data and<br>Security for<br>Infrastructure:                                 | Provide<br>Information to<br>TOSCo<br>Vehicle(s)<br>(RTCM)             | No vehicle in the front (No queue) (Too<br>close to the intersection)                                  | All Hazards | D    |

| FSR Table<br>(Section ID)                                                                                                                                                                                                                                   | Item Function<br>(based on Item<br>Definition)                              | TOSCo Driving Scenarios                                                                                                                                                                                                                          | Hazard      | ASIL                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------|
| 11. Safety<br>Requirements for<br>Queue Length<br>Detection and<br>Determination for<br>Infrastructure:                                                                                                                                                     | Determine the<br>Queue at the<br>Intersection                               | No vehicle in the front (No queue)<br>No vehicle in the front (No queue) (Too<br>close to the intersection)<br>Vehicles accelerating to leave queue<br>(dissipating queue)<br>Vehicle decelerating to stop or already<br>stopped (no queue)      |             | QМ<br>QМ<br>QМ<br>QМ    |
| 11. Safety<br>Requirements for<br>Queue Length<br>Detection and<br>Determination for<br>Infrastructure:                                                                                                                                                     | Determine the<br>Queue at the<br>Intersection                               | Vehicles decelerating to stop (static queue or growing queue)                                                                                                                                                                                    | All hazards | QM                      |
| <ul> <li>15. Safety</li> <li>Requirements for</li> <li>Enhanced SPaT</li> <li>Message</li> <li>Generation:</li> <li>16. Safety</li> <li>Requirements for</li> <li>Green Window</li> <li>Determination at</li> <li>TOSCo</li> <li>Infrastructure:</li> </ul> | Determine<br>Green Window<br>Prediction<br>based on<br>Queue<br>Information | No vehicle in the front (No queue)<br>Vehicles decelerating to stop (static queue<br>or growing queue)<br>Vehicle decelerating to stop or already<br>stopped (no queue)<br>No vehicle in the front (No queue) (Too<br>close to the intersection) |             | в<br>С<br>С<br><b>D</b> |
| <ul> <li>15. Safety</li> <li>Requirements for</li> <li>Enhanced SPaT</li> <li>Message</li> <li>Generation:</li> <li>16. Safety</li> <li>Requirements for</li> <li>Green Window</li> <li>Determination at</li> <li>TOSCo</li> <li>Infrastructure:</li> </ul> | Determine<br>Green Window<br>Prediction<br>Based on<br>Queue<br>Information | Vehicles accelerating to leave queue<br>(dissipating queue)                                                                                                                                                                                      | All Hazards | В                       |
| 13. Safety<br>Requirements for<br>Receiving SPaT<br>Information to<br>Infrastructure:                                                                                                                                                                       | Establish<br>Communication<br>with External<br>Infrastructure<br>Elements - | No vehicle in the front (No queue)<br>Vehicles accelerating to leave queue<br>(dissipating queue)                                                                                                                                                |             | B                       |

| FSR Table<br>(Section ID)                                                             | Item Function<br>(based on Item<br>Definition)                                                          | TOSCo Driving Scenarios                                            | Hazard      | ASIL |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------|------|
|                                                                                       | Receive Queue<br>Objects                                                                                | Vehicle decelerating to stop or already stopped (no queue)         |             | С    |
|                                                                                       |                                                                                                         | No vehicle in the front (No queue) (Too close to the intersection) |             | D    |
| 13. Safety<br>Requirements for<br>Receiving SPaT<br>Information to<br>Infrastructure: | Establish<br>Communication<br>with External<br>Infrastructure<br>Elements -<br>Receive Queue<br>Objects | Vehicles decelerating to stop (static queue or growing queue)      | All Hazards | с    |
|                                                                                       |                                                                                                         | No vehicle in the front (No queue)                                 |             | В    |
| 14. Safety                                                                            | Establish<br>Communication<br>with External                                                             | Vehicles accelerating to leave queue (dissipating queue)           |             | В    |
| Requirements for<br>MAP Configuration<br>for Infrastructure:                          | Infrastructure<br>Element-<br>Configure MAP                                                             | Vehicle decelerating to stop or already stopped (no queue)         |             | с    |
|                                                                                       | Data                                                                                                    | No vehicle in the front (No queue) (Too close to the intersection) |             | D    |
| 14. Safety<br>Requirements for<br>MAP Configuration<br>for Infrastructure:            | Establish<br>Communication<br>with External<br>Infrastructure<br>Element-<br>Configure MAP<br>Data      | Vehicles decelerating to stop (static queue or growing queue)      | All Hazards | с    |
| 10. Safety<br>Requirements for<br>GPS Time<br>Synchronization for<br>Infrastructure:  | Receive GPS<br>Clock Data for<br>TOSCo<br>Infrastructure                                                | Vehicles decelerating to stop (static queue or growing queue)      | All Hazards | С    |
|                                                                                       |                                                                                                         | No vehicle in the front (No queue)                                 |             | В    |
| 10. Safety<br>Requirements for                                                        | Receive GPS                                                                                             | Vehicles accelerating to leave queue (dissipating queue)           |             | В    |
| GPS Time<br>Synchronization for<br>Infrastructure:                                    | Clock Data for<br>TOSCo<br>Infrastructure                                                               | Vehicle decelerating to stop or already stopped (no queue)         |             | с    |
|                                                                                       |                                                                                                         | No vehicle in the front (No queue) (Too close to the intersection) |             | D    |

U.S. Department of Transportation ITS Joint Program Office – HOIT 1200 New Jersey Avenue, SE Washington, DC 20590

Toll-Free "Help Line" 866-367-7487

www.its.dot.gov

FHWA-JPO-22-961

